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Zusammenfassung

In der vorliegenden Doktorarbeit wird eine minimale supersymmetrische Erwei-
terung des Standard Modells (MSSM) mit erhaltender R-Parität angenommen.
Hierbei is das leichteste Neutralino ein guter Kandidat für kalte, dunkle Materie.
Durch den Vergleich der theoretisch vorhergesagten Neutralinorestdichte mit dem
experimentell sehr genau bestimmten Wert, können strenge Grenzen an den MSSM
Parameterraum gesetzt werden. Um die experimentelle Genauigkeit zu erreichen, ist
es notwendig Unsicherheiten innerhalb der theoretischen Berechnung zu reduzieren.
Eine der Hauptunsicherheiten liegt in der Berechnung des Wirkungsquerschnitts
von Annihilations- und Koannihilationsprozessen des Dunkle–Materie–Teilchens.
In einer phenomenologischen Studie untersuchen wir das Zusammenspiel zwischen
Neutralino–Neutralino–Annihilation, Neutralino–Stop–Koannihilation und Stop–
Stop–Annihilation näher. Wir zeigen, dass Neutralino–Stop–Koannihilation signi-
fikant zur Neutralinorestdichte beitragen kann. Auch hinsichtlich der Entdeckung
eines Higgsbosons mit einer Masse von 125 GeV ist dieser Prozess sehr interessant.
Auf Grund dieser Motivation haben wir alle supersymmetrischen QCD Korrek-
turen der Ordnung O(αs) zur Neutralino–Squark–Koannihilation berechnet. Wir
beschreiben detailliert das von uns gewählte DR/on-shell Renormierungsschema zur
Behandlung der ultravioletten Divergenzen und präsentieren die sogenannte

”
phase

space slicing“–Methode, mit der wir softe und kollineare Divergenzen isolieren. Zu-
sätzlich gehen wir auf die spezielle Behandlung von auftretenden on-shell Zustände
in Propagatoren ein.
Die gesamte Berechnung ist in das Softwarepaket DM@NLO implementiert worden
und dient somit als Erweiterung zu existierenden Computerprogrammen, die eine
numerische Berechnung der Restdichte dunkler Materie durchführen. Diese aller-
dings verwenden in ihrer Berechnung lediglich Wirkungsquerschnitte, die auf einem
effektiven Born–Niveau berechnet worden sind.
Am Beispiel von drei Szenarien untersuchen wir den Einfluss der berechneten Korrek-
turen auf den Wirkungsquerschnitt der Annihilations- und Koannihilationsprozesse.
Hierbei beobachten wir eine Korrektur von bis zu 30 %. Dies wiederum führt zu einer
Korrektur von ca. 5-9 % auf die Neutralinorestdichte, was größer als die momentane
experimentelle Unsicherheit ist. Es ist daher notwendig, die hier behandelten Kor-
rekturen für eine präzise Vorhersage der Neutralinorestdichte zu berücksichtigen.
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Abstract

In this thesis, we assume a minimal supersymmetric extension of the Standard Model
(MSSM) with conserved R-parity such that the lightest neutralino is the cold dark
matter candidate. A stringent constraint on the MSSM parameter space can be set
by the comparison of the predicted neutralino relic density with the experimentally
determined value. In order to match the high experimental precision, uncertainties
within the theoretical calculation have to be reduced. One of the main uncertainties
arises from the cross section of annihilation and coannihilation processes of the dark
matter particle.
In a phenomenological study we investigate the interplay of neutralino-neutralino
annihilation, neutralino-stop coannihilation and stop-stop annihilation. We demon-
strate that neutralino-stop coannihilation contributes significantly to the neutralino
relic density and is furthermore very well motivated due to the recent discovery of
a 125 GeV Higgs boson.
Due to this ample motivation we have calculated the full O(αs) supersymmetric QCD
corrections to neutralino-squark coannihilation. We show in detail our DR/on-shell
renormalization scheme for the treatment of ultraviolet divergences, and describe
the phase space slicing method which is used to handle soft and collinear infrared
divergences. Further, we comment on the treatment of occurring intermediate on-
shell states.
The whole calculation is provided within the numerical tool DM@NLO that serves as
an extension to existing relic density calculators, which consider only an effective
tree-level calculation. Based on three example scenarios we study the impact of the
NLO corrections on the total (co)annihilation cross section, and observe corrections
of up to 30 %. This leads to a correction of 5 − 9 % on the relic density, which is
larger than the current experimental uncertainty and is, thus, important to be taken
into account.
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1 Introduction

Almost hundred years ago, the first hint on the existence of dark matter was found.
Since then, the nature of dark matter belongs to one of the biggest unsolved questions
in modern physics. Over the past years, many theories have tried to accommodate a
dark matter particle within the established theoretical framework. Supersymmetry
is probably the most often discussed theory within this context. This is due to the
fact that the minimal supersymmetric extension of the Standard Model of particle
physics with conserved R-parity provides naturally a good cold dark matter candi-
date.
The properties of this particle fulfil all the requirements on dark matter which have
been set through various experiments. While astrophysical observations are able to
give us information about the characteristics dark matter has to possess, we have,
however, not yet managed to clearly identify a specific particle forming dark matter.
To do so, all over the world, many different astrophysical and collider experiments
try to discover such a dark matter particle.
Although we do not exactly know what dark matter is, we know very precisely how
much dark matter is around us. Due to measurements of the cosmic microwave back-
ground, we have a precise value for the relic density, which describes the amount of
dark matter that is present today.
Having a precise measurement of the amount of dark matter on the one hand, and
a theory which is able to describe a particle which could account for dark matter on
the other hand, we can combine both in order to constrain the theory based on ex-
perimental observations. By taking advantage of the interplay between astroparticle
and particle physics, further bounds can be considered like the mass of the recently
discovered Higgs boson, for instance. Thus, one is able to exclude certain regions in
the parameter space of a theory or to identify a particle in case of a discovery.
In order to match theoretical predictions with experimental observations it is crucial
that the theoretical uncertainties are at least of the same order of the experimental
errors. However, especially with the new data from the Planck satellite, which has
measured the cosmic microwave background with an unprecedented precision, the
theoretical uncertainties in the prediction of the relic density are larger. Thus, there
is a common effort within the community to reduce these uncertainties in order to
provide a more precise relic density prediction.
As the relic density depends significantly on the cross section of the (co)annihilation
of dark matter particles, one possibility is to improve the calculation of this quantity.
As up to now, public computing tools calculate the relic density based on a tree-level
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1 Introduction

calculation, it is promising to calculate the relevant cross sections at next-to-leading
order such that the theoretical uncertainty can be reduced.
Not only pair annihilation of two dark matter particles contributes to the calculation
of the relic density, but also coannihilation processes of dark matter with an almost
mass degenerate second particle. In case of the minimal supersymmetric extension of
the Standard Model (MSSM), for example, coannihilation of neutralinos and stops
can occur.
Therefore, we want to study in this work neutralino-stop coannihilation in the con-
text of achieving the experimentally determined relic density as well as with respect
to current constraints arising from particle physics. In order to obtain a more pre-
cise relic density prediction, we perform a full next-to-leading-order SUSY-QCD
calculation to neutralino-squark coannihilation, and study finally its impact on the
neutralino relic density.
We demonstrate that the achieved corrections are larger than current experimental
uncertainties, and, thus, are important to be taken into account, in particular re-
garding exclusion bounds within the MSSM parameter space.
The thesis is organized as follows:

In Chapter 2 we motivate, why Supersymmetry is an appealing extension of the
Standard Model of particle physics. We further give the basic theoretical building
blocks of Supersymmetry and introduce the MSSM, which we consider in the fol-
lowing. We give an overview of the MSSM particle content including the lightest
neutralino, which is assumed to be the dark matter candidate.

In the subsequent Chapter 3 we focus on dark matter. Evidence for the existence
of dark matter is given, and the necessary requirements on a possible dark matter
particle are discussed. We further review some frequently studied dark matter can-
didates, stress their advantages and comment on their shortcomings. Moreover, we
give an overview of the current status of different dark matter searches.

Having set the theoretical and experimental foundations, we focus further on the
calculation of the relic density in Chapter 4, as this will be important to understand
the impact of the (co)annihilation cross section. Since we focus on neutralino-stop
coannihilation in this work, we show explicitly the calculation of the relic density
including these coannihilation processes and conclude with discussing uncertainties
which enter the calculation.

In the subsequent Chapter 5 we discuss the current status of loop corrected
(co)annihilation cross sections and introduce the numerical package DM@NLO. This
code provides the SUSY-QCD corrected cross sections for all relevant processes
which enter the relic density computation. It can be used as an extension to existing
relic density calculators in order to obtain a more precise theoretical prediction for
the relic density.

In Chapter 6 we concentrate on the phenomenology of neutralino-stop coannihila-
tion. We show the interplay between different (co)annihilation processes to the relic
density, and put it in the context of other experimental constraints. A performed
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parameter study is discussed, in which we study the interplay of different final states
of neutralino-stop coannihilation. Moreover, we introduce three example scenarios,
which we will use in order to discuss the impact of the calculated corrections in a
later chapter.
The performed one-loop calculation will be topic of Chapter 7, where we elaborate
on the virtual contributions occurring in the Higgs and vector boson final states.
We show all relevant diagrams and introduce our generic implementation within the
DM@NLO code. The corresponding details regarding the virtual corrections are given
in the Appendix.
The renormalization procedure is explained in Chapter 8. The chosen renormal-
ization scheme is motivated, and all necessary counterterms which are needed within
the calculation are given explicitly.
The treatment of the real contributions is presented in Chapter 9. We introduce the
phase space slicing method for massive and massless final states in order to treat
carefully the occuring soft and collinear divergences. We put this in the context of
other approaches and discuss the case of intermediate on-shell states which occur
within the calculation of the W± final state.
Having discussed in detail the full one-loop calculation, we demonstrate the impact
of the loop corrections in Chapter 10. We study in detail the effect on the cross
section for different final states based on the example scenarios we introduced before.
Further, we show the impact on the relic density and show the significant shift on
the PLANCK favoured regions of parameter space.
Finally, we conclude in Chapter 11.

Parts of the thesis have already been published in Refs. [1, 2]. For those parts,
however, we show here more details and updated plots taking into account the latest
results of PLANCK.
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2 Supersymmetry and the MSSM

With the recent discovery of a Higgs boson [3, 4], particle physics is one step further
in solving the question of electroweak symmetry breaking. However, it is still an open
question if the discovered particle is the Standard Model Higgs boson or merely a
Standard Model like Higgs boson of another underlying theory, like Supersymmetry
(SUSY), for instance.
As Supersymmetry can explain the existence of a Higgs boson as well as several
shortcomings of the Standard Model, it is a well motivated and broadly studied
theory. In the following, we will discuss the motivation of Supersymmetry and its
underlying theory. Furthermore, we introduce the Minimal Supersymmetric Standard
Model (MSSM) and the corresponding particle content, which will be necessary for
the discussion within this work.

2.1 Motivation of Supersymmetry

The Standard Model of particle physics is an impressive theory which has described
fundamental interactions and elementary particles which all have been discovered
with dedicated experiments throughout the last decades. Nevertheless, there are still
some remaining open questions which cannot be explained by the current Standard
Model.
First, we have hints that there is something we call dark matter. However, the
common Standard Model of particle physics cannot explain dark matter with its
known particle content by itself. In order to obey all constraints on dark matter we
know so far, a new kind of particle is expected to exist. For a detailed discussion on
dark matter we refer to the next chapter 3.
Second, the aesthetic issue of unifying all three gauge couplings at a high scale would
require some new physics beyond the Standard Model. New physics could modify the
running of the couplings above the electroweak scale such that unification would be
possible. Theories which give rise to such a unification are also called Grand Unified
Theories (GUT).
Another motivation we want to mention for physics beyond the Standard Model
concerns the so called hierarchy problem [5, 6]. The Standard Model of particle
physics is an effective theory and thus, valid up to a mass scale Λ. This scale enters,
for instance, the one-loop contributions to the Higgs massmh. Thereby, the dominant
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Figure 2.1: Standard Model fermion contribution (left) and scalar contribution (right) to
the Higgs self energy.

contribution comes from the fermion loop carrying a quadratic divergence.

∆m2
h(f) =

−2λ2f
16π2

Λ2 (2.1)

With the cutoff-scale being around the Planck-scale, this is in clear discrepancy
with expecting the Higgs mass around the electroweak scale bounded by triviality,
perturbativity and vacuum stability. A huge fine-tuning would be necessary to cancel
this divergence order-by-order. Therefore, a new symmetry which protects the Higgs
mass would be much more natural, similar to the gauge or chiral symmetry, which
prevents the masses of the gauge bosons or scalars, respectively.

One solution to the hierarchy problem and also to the other aforementioned issues
would be Supersymmetry. This theory introduces a bosonic degree of freedom for
every Standard Model fermionic degree of freedom and vice versa. The contribution
of a supersymmetric scalar particle to the Higgs boson can be written as

∆m2
h(f̃) = 2

λf̃
16π2

Λ2. (2.2)

Under the assumption of |λf |2 = λf̃ , the loop of Eq. (2.2) would exactly cancel
the quadratically divergent contribution of the fermion loop to the Higgs mass of
Eq. (2.1), see Fig. 2.1. The difference in sign arises from the closed fermion loop,
the factor two in Eq. (2.2) is due to two chirality states of the scalar particle. Thus,
Supersymmetry would prevent the Higgs mass from large quadratic divergences.
As Supersymmetry is able to circumvent all the aforementioned shortcomings of the
Standard Model of particle physics, we want to have a closer look on its algebra,
the minimal supersymmetric extension of the Standard Model (MSSM), and finally
study the SUSY particle spectrum.
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2 Supersymmetry and the MSSM

2.2 The Theory of SUSY

Supersymmetry is a fascinating theory, not only because of the aforementioned phe-
nomenological consequences, but also from a more mathematical point of view. In
the following we want to study the theoretical motivation further, in order to derive
the supersymmetric Lagrangian in the end of this section.

2.2.1 SUSY Algebra

Supersymmetry is the only possible way of combining the space-time symmetry
of the Poincaré algebra with another continuous symmetry of the S-matrix consis-
tent in a non-trivial way within the relativistic quantum field theory. In the 1960s,
the Coleman-Mandula No-Go theorem [7] stated that a Lie algebra containing the
Poincarè algebra as a subgroup and another internal symmetry has to be a direct
sum and it is not possible to join them in a non-trivial way.
However, in 1975 the Haag- Lopuszańksi-Sohnius theorem [8] claimed on the basis
of work which was done by Wess and Zumino, that Supersymmetry can evade the
Coleman-Mandula theorem by going beyond usual Lie algebras. Considering graded
Lie algebras which also involve anticommutator relations, the Coleman-Mandula
Theorem does not apply anymore. Within a Z2 graded Lie algebra, even (bosonic)
and odd (fermionic) generators exist. The bosonic generators of the Lie subalgebra
obey the Coleman-Mandula theorem, and is a direct sum of the Poincaré algebra
with internal symmetries. The odd generators, however, belong to the (1

2
, 0) and

(0, 1
2
) representation of the homogeneous Lorentz group. With spinorial generators

existing in the fermionic subalgebra, the so-called supercharges Qα, a transforma-
tion between both subalgebras is possible. Thus, a non-trivial fusion of space-time
symmetry and a Z2 graded Lie algebra is achieved.
Thus, the theory of Supersymmetry is the most general continuous symmetry of the
S-matrix which is consistent with the Coleman-Mandula theorem. It is an outstand-
ing mathematical and physical motivated theory, which ever since has been a highly
attractive and widely discussed topic. For further details concerning the Coleman-
Mandula theorem and a detailed derivation of the Haag- Lopuszańksi-Sohnius theo-
rem, we suggest Refs. [9] and [10].
In the following, we focus on N=1 Supersymmetry, such that we consider only one
additional fermionic generator QN=1

α . This generator makes the transformation of a
fermion to a boson and vice versa possible

Qα|fermion〉 = |boson〉 and Qα|boson〉 = |fermion〉. (2.3)

7



2 Supersymmetry and the MSSM

The underlying algebra consists of the usual Poincarè algebra, which is given by

[Pµ, Pν] = 0, (2.4)

[Mµν , Pρ] = i(ηνρPµ − ηµρPν), (2.5)

[Mµν ,Mρσ] = −i(ηµρMνσ − ηµσMνρ − ηνρMµσ − ηνσMµρ), (2.6)

where Pµ is the generator of space-time translation and Mµν the generator of the
Lorentz-transformations. This is enlarged to the super-Poincarè algebra by

{Qα, Qβ̇} = 2σµ

αβ̇
Pµ (2.7)

{Qα̇
, Qβ} = 2σµ

αβ̇
Pµ, (2.8)

{Qα, Qβ} = {Qα̇
, Q

β̇} = 0 (2.9)

[Qα, P
µ] = [Q

α̇
, P µ] = 0 (2.10)

[Mρν , Qα] = −(σµν)βαQβ (2.11)

[Mρν , Q
α̇
] = −(σµν)α̇

β̇
Q

β̇
(2.12)

[Qα, R] = Qα, [Q
α̇
, R] = −Qα̇ (2.13)

where σµ

αβ̇
= (1, σi) and σµ

αβ̇
= (1,−σi) with σi being the Pauli matrices. Qα is

the fermionic spinorial SUSY generator. An additional global U(1)-symmetry of the
algebra can be identified, which is called R-invariance. The corresponding generator
is indicated by R.
The subscript α = 1, 2 indicates the (1

2
, 0) representation, whereas α̇ = 1, 2 denotes

the (0, 1
2
) representation of the homogeneous Lorentz group.

To obtain a complete theory, the usual Minkowski-space with its four “bosonic” com-
muting space-time coordinates has to be extended by four “fermionic” anticommut-
ing Grassmann variables θα=1,2 and θβ̇=1,2, denoted as two-component Weyl spinors
obeying

{θα, θβ} = {θα̇, θβ̇} = {θα, θβ̇} = 0. (2.14)

These eight coordinates build up the so-called superspace.
Defining the following unitary operator in terms of the Hermitian operators Pµ, Qα

and Qα̇

U(x, θ, θ) ≡ ei(θQ+θQ−xµPµ), (2.15)

we can calculate the product of two of these transformation operators

U(aµ, ξ, ξ)U(xµ, θ, θ) = U(aµ + xµ − iθα(σµ)αβ̇ξ
β̇
, θ + ξ, θ + ξ). (2.16)

8



2 Supersymmetry and the MSSM

The additional term in the Minkowski-coordinates of the resulting transformation is
caused due to the fact that Q and Q do not commute. This makes the non-trivial
connection of both groups visible.
We can now apply this transformation on a function in superspace Φ(x, θ, θ), which
is called superfield. This results in

U(aµ, ξ, ξ)U(xµ, θ, θ)Φ(0)U−1(xµ, θ, θ)U
−1(aµ, ξ, ξ)

= Φ(aµ + xµ − iθβ(σµ)αβ̇ξ
β̇
, θ + ξ, θ + ξ). (2.17)

In order to obtain the differential representation of the group operators we analyse
the infinitesimal variation of this superfield δsΦ, and obtain

Qα =
∂

∂θα
− iσµ

αβ̇
θ
β̇
∂µ Qα̇ = − ∂

∂θ
α̇

+ iθβσµ
βα̇∂µ. (2.18)

The covariant derivatives are defined as

Dα =
∂

∂θα
+ iσµ

αβ̇
θ
β̇
∂µ Dα̇ = − ∂

∂θ
α̇ − iθβσµ

βα̇∂µ (2.19)

and anticommute with supersymmetric transformations

{Dα, Qβ} = {Dα, Q
β̇} = {Dα̇, Qβ} = {Dα̇, Q

β̇} = 0. (2.20)

For further details the reader is referred to Refs. [11–13].

2.2.2 Chiral Superfields

The general scalar superfield can be expanded as a power series in θ and θ in terms
of its component fields

Φ(x, θ, θ) = φ(x) + θψ(x) + θ χ(x) + (θθ)m(x) + (θ θ)n(x) (2.21)

+ (θσµθ)Aµ(x) + (θθ)θ λ(x) + (θ θ)θϕ(x) + (θθ)(θ θ)d(x),

where we have suppressed the spinor indices for better readability. With the square of
two Grassmann-numbers being zero, the expansion of the superfield is finite. There-
fore, a superfield describes a finite multiplet of (component) fields: φ(x), m(x) and
n(x) being complex scalar or pseudo-scalar fields, ψ(x) and ϕ(x) are left-handed
Weyl spinor fields and χ(x) and λ(x) the corresponding right-handed ones. Finally,
Aµ denotes a Lorentz four-vector field and d(x) a real scalar field. In the following,
we deduce the meaning of these fields in the context of particle physics.
The reducible representation in Eq. (2.21) can be reduced to irreducible superfields

9



2 Supersymmetry and the MSSM

by imposing covariant constraints

Dα̇Φ(x, θ, θ) ≡ 0 (2.22)

DαΦ†(x, θ, θ) ≡ 0 (2.23)

Φ(x, θ, θ) ≡ Φ†(x, θ, θ). (2.24)

The fields which obey the first two conditions, are the so-called chiral superfields. The
third condition defines a vector superfield, which will be addressed in the next section.
These chiral superfields are able to describe the chiral Standard Model fermions and
their supersymmetric partners. The first condition (2.22) requires a left-handed and
the second one (2.23) a right-handed chiral superfield.
By performing a variable transformation yµ ≡ xµ+iθσµθ and requiring the condition
(2.22) the left-handed chiral superfield ΦL becomes

ΦL(y, θ) = φ(y) +
√

2θψ(y) + (θ θ)F (y). (2.25)

The same is true for the right-handed one

ΦR(z, θ) = φ∗(z) +
√

2 θ ψ(z) + (θ θ)F ∗(z), (2.26)

with zµ ≡ xµ − iθσµθ.
The component fields transform under infinitesimal transformation as [14]

δsφ(y) =
√

2αψ(y) (2.27)

δsψ(y) =
√

2αF (y) + i
√

2σµα∂µφ(y) (2.28)

δsF (y) = −i
√

2 ∂µψ(y) σµα. (2.29)

Hereby, Eq. (2.27) demonstrates the transformation of a boson to a fermion, whereas
Eq. (2.28) expresses the inverse transformation. The component field F (y) trans-
forms into a total space-time derivative, and thus, the action of this field is invariant
under supersymmetric transformation. The component field F (y) is also called an
auxiliary field.

2.2.3 Vector Superfields

Having now the possibility to describe spin-0 bosons and spin-1/2 fermions based
on chiral superfields, we focus in the following on the so-called vector superfields V .
Thus, the description of spin-1 bosons will also be possible. A vector superfield is
defined by the condition of being self-conjugate, see Eq. (2.24). It can be written as

V (x, θ, θ) = C(x) + θξ(x) + θ ξ(x) + (θ θ)M(x) + (θ θ)M∗(x) (2.30)

+ (θσµθ)Aµ(x) + (θ θ)θ λ(x) + (θ θ)θλ(x) + (θ θ)(θ θ)D(x),

10



2 Supersymmetry and the MSSM

where C(x) and D(x) are real scalar fields, M(x) is a complex scalar field, ξ(x) and
λ(x) are complex spinor fields, and Aµ a real vector field. Having the freedom of
choosing an appropriate gauge, we consider the Wess-Zumino gauge [13]

VWZ(x, θ, θ) = V (x, θ, θ) + Φ(x, θ, θ) + Φ†(x, θ, θ), (2.31)

with Φ being a general chiral superfield. It is the supersymmetric extension of a gauge
transformation. With a proper choice, the component fields ξ(x) = C(x) = M(x) = 0
vanish.
However, the Wess-Zumino gauge does not fix all gauge freedom, therefore we can
assume a conventional Abelian gauge transformation Aµ(x) → Aµ(x) + i∂µΨ (x).
Finally, a general vector superfield looks like

V (x, θ, θ) = (θσµθ)Aµ(x) + (θ θ)θ λ(x) + (θ θ)θλ(x) + (θ θ)(θ θ)D(x),(2.32)

where Aµ(x) is a real vector field, λ(x) a complex spinor field and D(x) a real scalar
field.
As in the previous case, we call the highest order component field D(x) an auxiliary
field. Similar to the auxiliary field F , it transforms as a space-time derivative and
thus, its action is invariant under supersymmetric transformation.

2.2.4 Supersymmetric Lagrangian

Finally, we construct the supersymmetric Lagrangian. The action of the Lagrangian
has to be invariant under supersymmetric transformations such that the Lagrangian
has to vanish up to a total derivative.
To this end, we investigate the product of two and three left-handed chiral superfields

ΦL,1ΦL,2 = (φ1 +
√

2θψ1 + (θ θ)F1)(φ2 +
√

2θψ2 + (θ θ)F2)

= φ1φ2 +
√

2θ(φ1ψ2 + ψ2φ1) + θθ(φ1F2 + φ2F1 − ψ1ψ2) (2.33)

ΦL,1ΦL,2ΦL,3 = φ1φ2φ3 +
√

2θ(φ1φ2ψ3 + φ1ψ2φ3 + ψ1φ2φ3)

+ (θθ)(φ1φ2F3 + φ1F2φ3 + F1φ2φ3)

− (θθ)(ψ1ψ2φ3 + ψ1φ2ψ3 + φ1ψ2ψ3). (2.34)

As already discussed, the component field with the highest order in θ of the ex-
panded chiral superfield transforms under supersymmetric transformation as a total
space-time derivative. Thus, the last term of Eq. (2.33) and Eq. (2.34) which is linear
in (θθ) is also called F-term and contributes to the later Lagrangian.
The −ψ1ψ2 term of Eq. (2.33) will give rise to a fermion mass term. The −(ψ1ψ2φ3 +
ψ1φ2ψ3 +φ1ψ2ψ3) part of Eq. (2.34) describes Yukawa interactions between a scalar
particle and two fermionic ones.
The discussion of multiplying more than two chiral fields does not have to be con-
sidered, as this would cause terms with mass dimension greater than four. This,

11



2 Supersymmetry and the MSSM

however, would lead to non-renormalizable interactions.
Another possibility of combining chiral superfields is the product of a left-handed
chiral superfield with its conjugate, a right-handed chiral superfield. With the prod-
uct being a vector superfield, the part which is invariant under SUSY transformation
is the term linear in θ θ θ θ

ΦLΦ†
L

∣∣
D

= FF ∗ − φ∂µ∂
µφ∗ − iψσµ∂

µψ. (2.35)

Therefore, this part is going to be considered for the supersymmetric Lagrangian as
well. In the last two expressions of the latter equation we identify two kinetic terms
for the scalar component φ and the fermionic ψ. The term FF ∗ of Eq. (2.35) is the
scalar superpotential, which is by definition always larger than or equal to zero. A
kinetic term for the F component field, does not appear though, which means that
this field does not propagate and is only an unphysical, auxiliary field.
The Lagrangian we have constructed so far, can thus be written as

L = ΦiΦ
†
i

∣∣∣
D

+

(
giΦi +

1

2
mijΦiΦj +

1

3
λijkΦiΦjΦk + h.c.

) ∣∣∣
F
, (2.36)

with the first term being the canonical Kähler potential, and the second term the
superpotential W

W =

(
giΦi +

1

2
mijΦiΦj +

1

3
λijkΦiΦjΦk + h.c.

) ∣∣∣
F
. (2.37)

Because the Lagrangian does not contain any derivatives of the auxiliary field F one
gets simple expressions for the Euler-Lagrange equations

∂L
∂Fi(x)

= F ∗
i (x) + gi +mijφj(x) + λijkφj(x)φk(x) = 0 (2.38)

∂L
∂F ∗

i (x)
= Fi(x) + g∗i +m∗

ijφ
∗
j(x) + λ∗ijkφ

∗
j(x)φ∗

k(x) = 0 ⇒ Fi = −∂W
†

∂Φ†
i

,

such that the terms containing the component field F can be expressed in terms
of the scalar field φ(x). Therefore, a chiral superfield has only two bosonic degrees
of freedom from the complex scalar field φ and construct a supermultiplet together
with the two fermionic degrees of freedom of the Weyl-spinor field ψ.
However, we have not considered all possible interactions for the final Lagrangian.
Next, we focus on the interaction of spin-1 particles and construct the Lagrangian
of a supersymmetric Abelian theory. Similar to the electromagnetic field strength
Fµν ≡ ∂µAν − ∂νAµ, a supersymmetric field strength can be defined as [11]

Wα ≡ −1
4
(D D)DαV (x, θ, θ) (2.39)

W α̇ ≡ −1
4
(D D)Dα̇V (x, θ, θ), (2.40)
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2 Supersymmetry and the MSSM

where Wα and W α̇ are chiral superfields and invariant under SUSY transformation.
Herein D,D indicates the auxiliary field, Dα, Dα̇ the covariant derivatives, and V
a general vector superfield. The supersymmetric field strength can be expanded in
terms of component fields

Wα = λα(y) +D(y)θα − (σµνθ)αFµν(y) + i(θθ)σµ

αβ̇
∂µλ

β̇
(y) (2.41)

W α̇ = λα̇(z) +D(z)θα̇ − ǫα̇β̇(σµνθ)β̇Fµν(z) − i(θ θ)(∂µλ(z)σµ)α̇. (2.42)

With the supersymmetric field strength being a chiral superfield, also the expression
WαW

α is a chiral superfield, such that the relevant expressions for the Lagrangian
are again the terms linear in θθ. The corresponding Lagrangian for the Abelian case
reads

L =
1

4

(
W αWα +W α̇W

α̇
) ∣∣∣

F

=
1

2
D2(x) − 1

4
Fµν(x)F µν(x) +

i

2
λ(x)σµ∂µλ(x) − i

2
(∂µλ(x))σµλ(x),(2.43)

with zµ ≡ xµ − iθσµθ, and yµ ≡ xµ + iθσµθ, respectively. The auxiliary field D(x)
can be again substituted by making use of the equation of motion. The fermion λ
which enters the gauge action will be the gaugino.
The last step before obtaining the final Lagrangian is to discuss the non-abelian
gauge interactions. A vector field transforms under a general non-abelian super-
symmetric gauge transformation as

eV
′ → e−iΛ†

eV eiΛ, (2.44)

where Λ denotes a chiral superfield specifying the gauge transformation. A similar
generalization is performed for the field strength

Wα → e−iΛWαe
iΛ (2.45)

W
α̇ → eiΛW

α̇
e−iΛ. (2.46)

Note that in the Abelian case Eq. (2.44) simplifies to Eq. (2.31), with Φ + Φ† =
iΛ − iΛ†.
Taking into account the modified expressions of Eqs. (2.44)–(2.46) and combining
Eq. (2.36) with Eq. (2.43), the final supersymmetric Lagrangian is obtained as

L = Φ†
i (e

V )ijΦj

∣∣∣
D

+
1

4

(
W αaW a

α +W
a

α̇W
α̇ a
) ∣∣∣

F
+ (W(Φi) + h.c.)

∣∣∣
F
, (2.47)
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where a indicates gauge indices. In terms of component fields we can find [11]

L = iψjσµD
†µ
ij ψi + (Dµ

ij φj)
†(Dµik φk)λ

a −
√

2g(λ
a
ψiT

a
ijφj + h.c.)

− 1

4
F a
µνF

µνa + iλaσµDµ − V (φi, φ
∗
j) −

[
1

2
ψiψjWij(φ) + h.c.

]
, (2.48)

where the covariant derivatives are defined as Dµ
ij = δij∂

µ + igAµaT a
ij with Aµa being

a gauge field, g the corresponding gauge coupling, and T a
ij the generators of the

group. The scalar potential consists of

V (φi, φ
∗
j) = FiF

∗
i +

1

2
DaDa, (2.49)

with Fi = −∂W†

∂Φ†
i

and Da = −gφ†
iT

a
ijφj.

On the basis of this most general supersymmetric Lagrangian, supersymmetric ex-
tensions to the Standard Model can be constructed. In the following we focus on
the smallest possible extension of the Standard Model, the Minimal Supersymmetric
Standard Model.

2.3 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is the smallest possible ex-
tension of the Standard Model within N = 1 Supersymmetry. An overview of the
particle content of the MSSM is given in Tab. 2.1 and Tab. 2.2.

chiral supermultiplets spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6
)

(×3 generations) u ũ∗R u†R ( 3, 1, −2
3
)

d d̃∗R d†R ( 3, 1, 1
3
)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

(×3 generations) e ẽ∗R e†R ( 1, 1, 1)

Higgs bosons, higgsinos Hu (H+
u H0

u) (h̃+u h̃0u) ( 1, 2 , +1
2
)

Hd (H0
d H−

d ) (h̃0d h̃−d ) ( 1, 2 , −1
2
)

Table 2.1: Chiral supermultiplets of the MSSM.
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vector supermultiplets spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W boson λ̃± λ̃3 W± W 0 ( 1, 3 , 0)

bino, B boson λ̃′ B0 ( 1, 1 , 0)

Table 2.2: Vector supermultiplets of the MSSM.

Each fermionic chirality state which is known from the Standard Model has a cor-
responding spin-0 superpartner, called sfermion. Each pair is embedded in a chiral
supermultiplet, which can be described by a chiral superfield. For each generation
of quarks, a SU(2)L-doublet Q of left-handed chiral supermultiplets exists and two
SU(2)L-singlets of a right-handed chiral supermultiplet u and d. For the leptons
each family has a SU(2)L-doublet L of left-handed chiral supermultiplets and a sin-
glet of a right-handed chiral supermultiplet e. In comparison to the pure Standard
Model, there exist two Higgs doublets in the MSSM. They are necessary to give
both, up and down quarks masses and to cancel anomalies which are introduced by
the higgsinos. Two chiral supermultiplets containing a Higgs and its superpartner,
the higgsino, build up each Higgs doublet Hu and Hd. The MSSM particle content
concerning gauge bosons is shown in Tab. 2.2. Each gauge boson gets a fermionic
spin-1/2 superpartner, called gaugino.
In order to construct a renormalizable MSSM superpotential the following contribu-
tions of the aforementioned chiral superfields are possible

WMSSM = (yu)ij HuQiūj + (yd)ij HdQid̄j + (ye)ij HdLiēj − µHdHu (2.50)

W∆L=1 =
1

2
λijkLiLjek + λ′ijkLiQjdk + µ′iLiHu (2.51)

W∆B=1 =
1

2
λ′′ijkuidjdk, (2.52)

where i, j represent the generation indices, and yu, yd and ye are 3 × 3 Yukawa cou-
plings equal to the Standard Model. The parameter µ denotes the supersymmetric
mass term of the Higgs doublets and µ′ is a three-dimensional parameter. λ, λ′ and
λ′′ are 3 × 3 matrices similar to the Yukawa couplings.
In contrast to the Standard Model, terms which violate baryon number B (Eq. (2.52))
or lepton number L (Eq. (2.51)) can occur in the MSSM. Those terms would give
rise to B- and L-violating processes, which have not been experimentally observed
up to now. Due to the non-observation of the proton decay stringent constraints are
set on the couplings λ′ · λ′′.
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To this end, a new multiplicative quantum number, named R-parity, is introduced

PR = (−1)3(B−L)+2s, (2.53)

with s being the spin of the particle. Due to this discrete Z2 symmetry, all Standard
Model particles carry even R-parity (PR = +1), while all supersymmetric particles
odd (PR = −1). The conservation of R-parity has the effect that all above mentioned
B and L violating terms are forbidden. Thus, R-parity conservation is the usual
choice in the MSSM. However, for completeness it should be mentioned that there
exist other models allowing either B or L violating terms, which are not in conflict
with the the non-observation of the proton decay (in contrast to B and L violating
terms). Such models with broken R-parity are currently also of interest and under
investigation.
In this work, however, we focus on an R-parity conserved MSSM, such that we end
up with the MSSM superpotential of Eq. (2.50).

2.4 SUSY Breaking

Up to now, Standard Model particles and their superpartners would have the same
mass. This, however, is obviously not the case as shown by the current experimental
observations. To construct a realistic phenomenological model, a kind of Supersym-
metry breaking has to be part of the theory.
Another motivation becomes clear by looking again at Eq. 2.50. Here, the dimension-
ful parameter µ is introduced, which provides masses for the higgsinos, and leads to
a non-negative scalar potential

|µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2), (2.54)

with a minimum at H0
u = H0

d = 0. This implies that the general MSSM Lagrangian
we have introduced so far cannot accommodate electroweak symmetry breaking.
Thus, SUSY cannot be an exact symmetry and some mechanism of SUSY breaking
has to be considered. One possibility would be spontaneous SUSY breaking, which
means, by definition, that the vacuum state is not invariant under SUSY transfor-
mations

Qα|0〉 6= 0 and Q†
α̇|0〉 6= 0, (2.55)

where Qα and Q†
α̇ are the SUSY generators. In a global Supersymmetry the Hamil-

tonian operator H is directly related to the SUSY generators

H = P 0 =
1

4
(Q1Q

†
1 +Q†

1Q1 +Q2Q
†
2 +Q†

2Q2), (2.56)
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which is due to the SUSY algebra, see Eq. (2.8). Thus, for a spontaneously broken
Supersymmetry one expects a positive vacuum expectation value (vev)

〈0|H|0〉 =
1

4
(‖ Q1|0〉 ‖2 + ‖ Q†

1|0〉 ‖2 + ‖ Q2|0〉 ‖2 + ‖ Q†
2|0〉 ‖2) > 0. (2.57)

With 〈0|H|0〉 = 〈0|L|0〉 = 〈0|V |0〉, also a positive expectation value is implied for the
scalar SUSY potential 〈0|V |0〉. By comparing with Eq. (2.49), this can be obtained
by

〈0|F |0〉 ≡ Λ2 6= 0 or 〈0|D|0〉 ≡ Λ2 6= 0, (2.58)

with Λ2 being the mass scale, and F and D the introduced auxiliary fields. The
former possibility is called F -type breaking or O’Raifeartaigh mechanism [15], the
latter one D-type breaking or Fayet-Iliopolus mechanism [16]. However, pure D-
type or F -type breaking give rise to phenomenological difficulties within the MSSM.
Therefore, the idea of a hidden sector was born. In this sector the origin of spon-
taneously broken SUSY could lie which is transferred by messenger interactions to
the visible sector of the MSSM via flavour blind interactions. Different approaches
exist to realize such a behaviour. One example is gravity mediated Supersymmetry
breaking [17], where gravity is the messenger of SUSY breaking. In gauge mediated
Supersymmetry breaking [18], however, gauge forces transfer the breaking to the vis-
ible sector. Further details on SUSY breaking can be found in [13, 14, 19].
As we have no clear hint on how SUSY is broken, the usual approach is to break
SUSY explicitly by introducing so called soft SUSY breaking terms. These have a
positive mass dimension in order to maintain the mass hierarchy and not to intro-
duce new divergences. The most general soft SUSY breaking Lagrangian is given
by

LMSSM
soft = −1

2

(
M1B̃B̃ +M2W̃W̃ +M3g̃g̃ + h.c.

)

− (M2
Q̃

)ij Q̃
†
i Q̃j − (M2

ũ)ij ˜̄u†i ˜̄uj − (M2
d̃
)ij

˜̄d†i
˜̄dj

− (M2
L̃
)ij L̃

†
i L̃j − (M2

ẽ )ij ˜̄e†i ˜̄ej

− m2
Hu
H†

uHu −m2
Hd
H†

dHd − (bµHdHu + h.c.)

+ (Au)ij HuQ̃i ˜̄uj + (Ad)ij HdQ̃i
˜̄dj + (Ae)ij HdL̃i ˜̄ej + h.c., (2.59)

where M1, M2 and M3 are the complex bino, wino and gluino mass parameters and
M2

Q̃
, M2

L̃
, M2

ũ , M2
d̃

and M2
d̃

the 3 × 3 hermitian matrices of the soft SUSY breaking

mass terms of the squarks and sleptons. The third term of Eq. 2.59 introduces the
real soft SUSY breaking Higgs mass terms m2

Hu
and m2

Hd
as well as the complex

parameter b, which is defined in dependence of the off-diagonal Higgs squared mass
term m2

12 ≡ bµ. The last expression of Eq. 2.59 gives rise to 3 × 3 complex matrices
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of the trilinear coupling Au, Ad and Ae.
While due to the unbroken MSSM only one additional parameter was introduced,
now the soft SUSY broken MSSM counts in total 124 independent parameters, of
which 18 are from the Standard Model, one newly introduced by the Higgs sector
and 105 by soft SUSY breaking.

2.5 Phenomenological Models

However, not all 105 parameters give rise to physically viable observables. Without
any restrictions new sources of CP violation are introduced, Lepton numbers are not
separately conserved and flavor-changing neutral currents would be unsuppressed.
Considering these constraints, some combinations of the trilinear couplings and the µ-
parameter have to be sufficiently small, and stringent constraints on the off-diagonal
entries of the sfermionic soft SUSY breaking mass matrices are set [20].
Motivated by grand unified supersymmetric theories the unification of the SU(3)×
SU(2) × U(1) gauge couplings at some high scale Q = MGUT

M1(Q) = M2(Q) = M3(Q) = m1/2 (2.60)

is often assumed, which leads at the electroweak scale to the relation

M3 =
g2s
g2
M2 ≃ 3.5M2 and M1 =

5g′2

3g2
M2 ≃ 0.5M2, (2.61)

with gs being the strong SU(3) coupling constant. The SU(2) and U(1) gauge cou-
plings are indicated by g′ and g, respectively. An often considered, simplified model
is the so-called constrained Minimal Supersymmetric Standard Model (CMSSM),
which reduces the number of free parameters to five. Hereby, the soft SUSY breaking
squared scalar masses and the trilinear coupling are assumed to be flavour diagonal
and universal

M2
Q̃

(Q) = M2
ũ(Q) = M2

d̃
(Q) = m2

01

M2
L̃
(Q) = M2

ẽ (Q) = m2
01

m2
Hu

(Q) = m2
Hd

(Q) = m2
0

Au(Q) = Ad(Q) = Ae(Q) = A01. (2.62)

Thus the CMSSM can be described by the following five parameters

m0, A0, m1/2, tanβ, and sgn(µ), (2.63)

with tanβ = vu/vd being the ratio of the Higgs expectation values. The CMSSM
should not be confused with minimal supergravity (mSUGRA), which is an example
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2 Supersymmetry and the MSSM

for a gravity mediated SUSY breaking framework. In mSUGRA two additional
constraints b0 = A0 − m0 and m3/2 = m0 are introduced assuming a simplifying
form for the hidden sector [20].
However, the CMSSM is highly challenged by the recent collider searches, thus it
is interesting to relax certain constraints and to consider other phenomenological
reasonable realizations of Supersymmetry.
One approach is, for example, the assumption of non-universal Higgs masses
(NUHM). In the NUHM1 model only one parameter is added to the usual CMSSM
by assuming m2

Hu
(Q) = m2

Hd
(Q) 6= m2

0. In NUHM2, however, two parameters are
additionally considered, because the squared Higgs mass parameters are not set
necessarily equal m2

Hu
(Q) 6= m2

Hd
(Q) at the high scale.

A more general approach is the phenomenological Minimal Supersymmetric Stan-
dard Model (pMSSM), which was originally introduced by Refs. [21, 22]. It counts
19 free parameters in total [22] and is a CP -conserving MSSM with minimal flavour
violation. The gaugino mass parameters M1, M2, and M3 are assumed not to be
necessarily unified at the GUT scale and the three trilinear couplings Au, Ad and
Ae are treated independently (while the first two are negligibly small). Also, the
squared sfermion mass matrices are independent parameters. The first and second
generation are assumed to be degenerate though. The Higgs sector is described by
three parameters: tanβ, the mass of the pseudoscalar Higgs mA and the higgsino
mass parameter µ.
This kind of model – benefiting, on the one hand, from a reduced number of free
parameters, when compared to the MSSM, but still containing enough parameters
to study the MSSM without too many constraints – is used in this work.

2.6 The MSSM Particle Content

As a detailed knowledge of the sparticle characteristics is essential for a detailed
discussion of the loop calculation, renormalization and the general phenomenology
of neutralino-stop coannihilation, we discuss the particle spectrum of the Minimal
supersymmetric Standard Model in the following.

2.6.1 Higgs Sector

So far, we have not considered electroweak symmetry breaking SU(2)L × U(1)Y →
U(1)EM . In comparison to the Standard Model this is slightly more involved, as the
MSSM contains two Higgs doublets. The scalar potential for the Higgs sector can
be written as

V = (|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 − (bH0
uH

0
d + h.c.)

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2. (2.64)
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The corresponding expressions originate from the pure MSSM Lagrangian (see
Eq. (2.50)) as well as from the soft SUSY breaking terms (see Eq. (2.50)). Hereby,
we have already rotated away the vacuum expectation values for the charged Higgs
by taking advantage of SU(2)L gauge transformations and setting H+

u = H−
d = 0 at

the minimum. We can then deduce two constraints for maintaining a minimum of
the scalar potential

2b < 2|µ|2 +m2
Hu

+m2
Hd

and b2 > (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd

), (2.65)

such that H0
u and H0

d get non-zero vevs vu ≡ 〈H0
u〉 and vd ≡ 〈H0

d〉, respectively. The
ratio of the two vevs is defined as

tanβ ≡ vu
vd

=
〈H0

u〉
〈H0

u〉
. (2.66)

Finally, three of the eight degrees of freedom of the two complex Higgs-doublets
are Nambu-Goldstone bosons G0 and G±, which become the longitudinal modes of
the massive Z0 and W± bosons. The other five are the Higgs mass eigenstates: two
CP -even neutral Higgs bosons h0 and H0, one CP -odd neutral Higgs A0 and two
charged ones H±. The masses of the aforementioned five Higgs bosons are given by

m2
A0 = 2b/sin(2β) = 2|µ|2 +m2

Hu
+m2

Hd
(2.67)

m2
h0,H0 =

1

2

(
m2

A0 +m2
Z ∓

√
(m2

A0 −m2
Z)2 + 4m2

Zm
2
A0sin

2(2β)

)
(2.68)

m2
H± = m2

A0 +m2
W . (2.69)

2.6.2 Neutralino and Chargino Sector

Due to electroweak symmetry breaking, higgsinos and gauginos mix with each other.
The neutral higgsinos H̃0

u and H̃0
d as well as the neutral gauginos B̃ and W̃ 0 form

the four mass eigenstates called neutralinos χ̃i=1,2,3,4.
The charged higgsinos H̃+

u and H̃−
d and the charged gauginos W̃+ and W̃− combine

to the four mass eigenstates called charginos χ̃±
i=1,2.

The part of the Lagrangian which defines the neutralino masses is given by

L = −1

2
(ψ0)TMχ̃0ψ0 + h.c., (2.70)

20



2 Supersymmetry and the MSSM

with ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u) being the gauge eigenstate basis of the neutralinos. The

mass matrix Mχ̃0 is obtained as

Mχ̃0 =




M1 0 −mZ sin θW cos β mZ sin θW sin β
0 M2 mZ cos θW cos β −mZ cos θW sin β

−mZ sin θW cos β mZ cos θW cos β 0 −µ
mZ sin θW sin β −mZ cos θW sin β −µ 0


 .

(2.71)

Diagonalizing the mass matrix with the unitary matrix N , we get the following
neutralino masses

N∗Mχ̃0 N−1 = diag(mχ̃0
1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
), (2.72)

with mχ̃0
1

being defined as the mass of the lightest neutralino and mχ̃0
4

of the heaviest.
The mass eigenstates of the neutralinos are given by

χ̃0
i = Nij ψ

0
j i, j = 1, . . . , 4 . (2.73)

In the MSSM, the lightest neutralino is very often also the lightest supersymmetric
particle (LSP). Due to R-parity conservation, the LSP is stable, and all super-
symmetric particles decay into the LSP at some point. The lightest neutralino is
at the same time also a very good dark matter candidate.
The charginos can be obtained in a similar manner. The relevant term of the La-
grangian is given by

L = −1

2
(ψ±)TMχ̃±ψ± + h.c., (2.74)

with ψ0 = (W̃+, H̃+
u , W̃

−, H̃−
d ) denoting their gauge eigenstate basis. The mass

matrix Mχ̃± can be expressed in 2 × 2 block form

Mχ̃± =

(
0 XT

X 0

)
, (2.75)

with

X =

(
M2

√
2mW sin β√

2mW cos β µ

)
. (2.76)

This asymmetric mass matrix can be diagonalized by the two unitary matrices W
and V

W ∗Mχ̃± V −1 = diag(mχ̃±
1
, mχ̃±

2
). (2.77)
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Finally, the mass eigenstates of the charginos are given by

(
χ̃+
1

χ̃+
2

)
= V

(
W̃+

H̃+
u

)
and

(
χ̃−
1

χ̃−
2

)
= W

(
W̃−

H̃−
d

)
. (2.78)

2.6.3 Sfermion Sector

In the following, we focus on the part of the Lagrangian which describes the masses

of the sfermions. For this, we define a six component vector φf̃ =

(
f̃L
f̃R

)
which

consists of the left-handed and right-handed gauge eigenstates of all generations
with f̃ = ũ, d̃, ẽ, ν̃ (however, for ν̃ we set ν̃R = 0). Thus, the sfermion masses are
given by the following part of the Lagrangian

Lf̃ = −φ†
f̃
M2

f̃
φf̃ , (2.79)

with the mass matrix being a 2 × 2 Hermitian matrix consisting of 3 × 3 blocks

M2
f̃

=

(
M2

f̃L
M2

f̃LR

M2†
f̃LR

M2
f̃R

)
. (2.80)

For squarks the diagonal entries can be written as

M2
f̃L

= M2
Q̃

f̃

+m2
f +m2

Z [T 3
f̃
−Qf̃ sin2 θW ] cos(2β)1 (2.81)

M2
f̃R

= M2
ũ
f̃

+m2
f +m2

ZQf̃ sin2 θW cos(2β)1 (2.82)

M2
f̃R

= M2
d̃
f̃

+m2
f +m2

ZQf̃ sin2 θW cos(2β)1. (2.83)

Similarly, the corresponding 3 × 3 matrices for the sleptons are given by

M2
f̃L

= M2
L̃
f̃

+m2
f +m2

Z [T 3
f̃
−Qf̃ sin2 θW ] cos(2β)1 (2.84)

M2
f̃R

= M2
ẽ
f̃

+m2
f +m2

ZQf̃ sin2 θW cos(2β)1. (2.85)

Hereby, M2
Q̃

f̃

, M2
ũ
f̃
, M2

d̃
f̃

, M2
L̃
f̃

, and M2
ẽ
f̃

are the soft SUSY breaking mass terms, mf

the fermion mass of the corresponding family, Qf̃ the electric charge, and T 3
f̃

the

third component of the weak isospin of f̃L.
The off-diagonal entries of the mass matrix M2

f̃
can be expressed for both, squarks

and sleptons, as

M2
f̃LR

= mf (A∗
f − µ cotβ) for up − type sfermions (2.86)

M2
f̃LR

= mf (A∗
f − µ tanβ) for down − type sfermions, (2.87)
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where Af denotes the trilinear coupling and µ the higgsino parameter.
As the off-diagonal entries are proportional to the fermion masses, the mixing of the
first and second generation squarks is quite small. By rotating with the 6×6 unitary
matrix U the mass matrix can be diagonalized

M2(D)

f̃
= U †M2

f̃
U, (2.88)

and we find the six sfermion mass eigenstates f̃i

f̃i = U∗
ji f̃jL + U∗

i,j+3 f̃jR j = 1 . . . 3, (2.89)

where i = 1 denotes the lightest and i = 6 the heaviest sfermion mass eigenstate.
Thus, we have a complete picture of the supersymmetric mass spectrum which is of
interest for the further work. In particular in Chap. 8, in which the renormalization
of the loop calculation will be discussed, the introduced definitions will be used.
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3 Dark Matter

One of the compelling open problems of modern physics is to identify the nature
of dark matter. In the following, we want to mention several examples which give
us proof of its existence, summarise the key characteristics which dark matter has
to fulfil in order to be in agreement with all experimental observations and give an
overview of the current status of different dark matter searches.

3.1 Evidence for the Existence of Dark Matter

The observations made by Fritz Zwicky in 1933 [23] are often referred to be the
first observational hint for dark matter. But already earlier, in 1922, James Jeans
suggested that “there must be about three dark stars in the universe to every bright
star”and a general concept of dark matter was proposed by Edward Fournier d’Albe
in 1907 [24, 25].
Since these early observations were made, hints for the existence of this kind of
matter have been growing. In the following, we want to give an overview of the
most convincing evidence for the existence of dark matter we know nowadays. The
subsequent discussed experimental observations of dark matter are not meant to
be a complete list, however, they should give a general flavour of various kinds of
observations which point us to some kind of matter, whose nature we do not know
up to now exactly. For a review about dark matter the reader is referred to [24, 26].

3.1.1 Velocity Distribution of Galaxies within the Coma Cluster

The first renowned observation of dark matter was achieved by Fritz Zwicky in 1933,
who studied the Coma cluster [23]. By observing doppler shifts in galactic spectra,
he was able to calculate the velocity dispersion of the individual galaxies within the
Coma cluster vobs = v0±σ, with v0 being the velocity of the total Coma cluster with
respect to us. Thus, the average kinetic energy of the galaxies can be calculated as

〈T 〉 ≈ 3

2
mσ2. (3.1)

25



3 Dark Matter

Under the assumption of only gravitational interactions and Newtonian gravity, the
average gravitational potential energy is given by the third Keplerian law

〈V 〉 ≈ −G
2mM

R
, (3.2)

where m indicates the average mass of an individual galaxy of the cluster, M the
mass of the total cluster, and R describes its radius. According to the virial theorem
〈T 〉 = −1

2
〈V 〉, the total mass of the Coma cluster is calculable. Performing this

analysis, a mass for the Coma cluster of Mcluster ≈ 4.5 × 1013M⊙ was found. This
value exceeds the mass which was measured by mass-to-light ratios by far. Due to
these measurements, a mass of only 2 % of Mcluster was expected [27]. Because of
this discrepancy, it was clear that there has to be some other kind of non-visible
matter which could explain the much higher mass predicted by the virial theorem.

3.1.2 Rotation Curves of Spiral Galaxies

Also, on the scale of individual galaxies, the claim of the existence of dark matter
has been confirmed. Studying the circular velocity distribution of stars and gas of
a single spiral galaxy as a function of the distance to the galactic centre shows an
interesting behaviour.
According to Newtonian dynamic the circular velocity can be written as

vc(r) =

√
G M(r)

r
, (3.3)

where M(r) = 4π
∫ r

0
dr′r′2ρ(r′) describes the total mass up to a radius r of the galaxy,

with ρ(r) describing the mass density profile and G the Newtonian constant. For the
area beyond the visible disk, one would expect a decreasing behaviour ∝ 1/

√
r. But

in contrast to these expectations, measurements tell us that, however, the velocity
distribution vc stays constant. Fig. 3.1 shows as example the NGC 6503 spiral galaxy,
where this behaviour is clearly visible. This observation could imply the existence
of a dark matter halo with a density distribution of ρ ∝ 1/r2 larger than the visible
disk and would lead to the observed constant velocity distribution outside the visible
galaxy [26]. The different contributions to the measured velocity distribution are also
depicted in Fig. 3.1. It is nicely visible that adding up all single contributions which
arise from the matter disk, the gas and a possible dark matter halo, would lead
exactly to the observed behaviour.

3.1.3 Weak Gravitational Lensing Effects of the Bullet Cluster

A more recent experimental observation and hint for the existence of dark matter
is the so-called bullet cluster. In Fig. 3.2 an X-ray image of the two merging galaxy
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Figure 3.1: Velocity distribution of the spiral galaxy NGC 6503. The data points depict the
observed velocity distribution. The contributions of the gas and the matter disk
alone would give rise to the dotted and dashed line, respectively. A dark mat-
ter halo with a density distribution of ρ ∝ 1/r2 would lead to the distribution
which is shown as dashed-dotted line. By considering all three possible contri-
butions, the solid line is obtained, which is in very good agreement with the
observed data. Figure taken from [28].
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Figure 3.2: Image of the bullet cluster (merging cluster 1E0657-558) taken by the Chandra
telescope. The green contours show the gravitational potential reconstructed by
weak gravitational lensing. In blue the X-ray emission of the intergalactic hot
plasma is visible. Red to yellow colours show the shock cones of the colliding
gas of the two subclusters. Image taken from [29].

clusters 1E0657-558 obtained by the Chandra telescope in 2006 [29] is shown. In red
to yellow colours, the X-ray emission of the colliding shock cones of the hot gas is
visible, while in blue the distribution of the intergalactic hot plasma is depicted. The
latter makes up the main visible component of the total cluster mass. Additionally,
the gravitational potential of the two merging clusters depicted in green contours in
Fig 3.2 was obtained via weak gravitational lensing methods.
Comparing both distributions, an 8 σ significance spatial offset of the centre of the
total mass with respect to the centre of the baryonic mass was determined. This
leads to the assumption that the two galaxy clusters consist mostly of dark matter
which is weakly interacting, and can thus pass each other unhinderedly. The visible
gas, however, interacts heavily, which is observable due to the shock cones. As this
observation cannot be explained only by theories modifying the gravitational force
law (MOND, see Sec. 3.3), this is a clear evidence for the existence of dark matter.
Within the bullet cluster, this invisible kind of matter makes up the majority of the
total mass.

3.1.4 Cosmic Microwave Background

Whereas the aforementioned observations show clear evidence for the existence of
dark matter, they do not allow us to determine the total amount of dark matter in
our universe. However, with exact measurement of the cosmic microwave background
(CMB), one can very precisely determine the dark matter relic density.
During the evolution of the universe, shortly after the recombination of electrons
and atoms, the photons decouple and can propagate without scattering. This cosmic
microwave background is an almost perfect black body spectrum with T=2.726 K
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and is globally isotropic up to a level of 10−5. In the 1990s, the COBE satellite was
able to confirm the isotropic black body spectrum of the CMB, and discovered the
first hint of a dipole anisotropy [30]. This was a big success in order to support the Big
Bang Theory with its theoretical framework. The measurements have been even more
refined by WMAP by improving the measurements of tiny density fluctuations in
the early universe [31–34]. There are several effects which can affect the temperature
of the photons: Fluctuations in the energy density of the photons at the time of last
scattering, a Doppler shift or the Sachs-Wolfe effect as well as the integrated Sachs-
Wolfe effect. For more details on these effects the interested reader is referred to
Ref. [35]. The observed temperature fluctuations can be theoretically described by
a 2-dimensional power spectrum [26]

δT

T
(θ, φ) =

+∞∑

l=2

+l∑

m=−l

almYlm(θ, φ), (3.4)

where Ylm(θ, φ) indicates the spherical harmonics which depend on the polar angles
θ and φ which parametrise the sky. The variance of thermal fluctuations can then
be expressed as follows

〈(δT
T

)2 〉
=

∫ 2π

0

∫ π

0

(
δT
T

)2
dθ sinφ dφ

∫ 2π

0

∫ π

0
dθ sinφ dφ

. (3.5)

Integrating over the polar coordinates and using the orthogonality relation of the
spherical harmonics we arrive at

〈(δT
T

)2 〉
=

1

4 π

∑

lm

∑

l′m′

∫ 2π

0

∫ π

0

almal′m′Ylm(θ, φ)Yl′m′(θ, φ)dθ sinφ dφ. (3.6)

As observations confirm the assumption that these small temperature fluctuations
are Gaussian-like distributed, we can reformulate the previous expression further to

〈(δT
T

)2 〉
=

1

4 π

∑

lm

almal′m′δll′δmm′ (3.7)

=
1

4 π

+∞∑

l=2

+l∑

m=−l

a2lm (3.8)

=
1

4 π

+∞∑

l=2

(2l + 1)Cl , (3.9)
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where we made use of the following definition of the variance Cl of alm in the last
step

Cl ≡ 〈a2lm〉m =
1

(2l + 1)

+l∑

m=−l

a2lm. (3.10)

After making the following final assumption, see also Ref. [36],

1

4 π

+∞∑

l=2

(2l + 1)Cl ≈
∫

l(l + 1)

2π
Cl d(ln l) (3.11)

we end up with the established description of the 2-dimensional power spectrum
in order to describe the CMB properly. Usually, the power spectrum of the CMB
is plotted in terms of l(l + 1)Cl/(2π) as a function of the multipole moments l.
Fig. 3.3 shows the latest data of PLANCK, where the perfect description by using
this approach is visible. Under the assumption of a specific cosmological model, a
Likelihood-fit of the power spectrum in dependence of astrophysical key parameters
is possible. Most commonly the ΛCDM model is assumed to describe cosmology
with the help of essentially six different parameters: The energy content of baryons
Ωbh

2, the physical dark matter density ΩCDMh
2 and the Hubble expansion rate H0.

The amplitude As of the power law spectrum P0(k) ∝ Ask
ns−1 contains the optical

depth parameter τ , and the spectral index ns describes the initial perturbations. This
minimal set of six parameters can be used to fit the observed data with a likelihood
analysis and, thus, to extract a precise value of the relic density. For more details
we refer to Ref. [38]. Taking into account the PLANCK data, the latest results [37]
are obtained as

Ωbh
2 = 0.02205 ± 0.00028 ΩCDMh

2 = 0.1199 ± 0.0027, (3.12)

with h being the Hubble constant in units of 100 km/(s·Mpc). Besides studying the
cosmic microwave background, there are also other methods to study the exact value
of the total amount of dark matter in the universe: The redshift survey by the Sloan
Digital Sky Survey (SDSS), the study of baryon acoustic oscillations (BAO), which
are caused by acoustic waves which existed in the early universe, or the analysis
of the Lyman-alpha forest, which is the sum of absorption lines arising from the
Lyman-alpha transition of the neutral hydrogen in the spectra of distant galaxies
and quasars.

3.2 Requirements on a Dark Matter Candidate

Considering these various observations of non-luminous matter, there is clear ev-
idence for the existence of dark matter at a huge range of scales: Experimental
observations attest the presence of dark matter from the size of galaxies due to ro-
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Figure 3.3: PLANCK foreground-subtracted temperature power spectrum under the as-
sumption of a ΛCDMmodel. The grey dots show the power spectrum multipole-
by-multipole, the blue points depict averages in bands of ∆l ≈ 31. The best fit
assuming a ΛCDM model is shown in red and in perfect agreement with the
data. In green the ±1σ error on the individual mulitpoles is depicted. Image
taken from [37].
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tation curves, to clusters of galaxies by the virial theorem up to cosmological scales
by the CMB.
Although the relic density of dark matter can be determined very precisely, the
question still remains, what the nature of dark matter is and which theory is able
to explain this kind of matter considering all recent observations.
An extensive overview about requirements on a dark matter candidate is given in
Ref. [39], where a ten-point test is introduced. We will follow this approach and
distinguish these points into two categories: pure requirements on a dark matter
particle, which we want to focus on in the following, and compatibleness of different
candidates to current dark matter searches. The latter will be addressed in the ded-
icated Section 3.4.
Considering the previously discussed observations for dark matter, a possible dark
matter candidate has to fulfil the following characteristics:

Non-baryonic. In order to be consistent with the observations concerning the bullet
cluster, the CMB and to match the requirements regarding the big bang nucleosyn-
thesis (BBN), dark matter has to be non-baryonic. Furthermore, it has to match the
experimentally determined relic density as given in Eq. (3.12).

Stable. Moreover, a potential dark matter particle has to be stable. This means
that its lifetime has to exceed at least the present age of our universe. According to
the estimates of the Hubble Space Telescope Key Project, a lifetime of τ ≧ 4.3×1017s
is required (see e.g. Ref. [40]).

Neutral. As the feature of non-luminosity serves even as eponym for dark matter,
the new kind of matter has to be electrically neutral. Also a colour charged particle
is very unlikely regarding different constraints: Those could have an impact on the
stability of disks of spiral galaxies [41], or even disrupt elements generated by the
big bang nucleosynthesis [42]. Charged particles could also lead to interferences with
CMB anisotropies and with the large scale structure power spectrum [43]. To be
consistent with direct detection (further details can be found in Sec. 3.4) they should
have only small couplings to bosons charged under SU(2). All together, dark matter
is expected to be an electrically neutral and colour singlet particle. Considering
the observations regarding the bullet cluster, dark matter is also supposed to be
collisionless [29].

Cold. Dark matter can be distinguished by being cold, warm or hot. The large
scale structures, which we can observe today in our universe are dependent on mi-
croscopic properties of the dark matter candidate during the evolution of the early
universe. When the universe became matter dominated, the dark matter density per-
turbations started to grow and cause fluctuations in the fluid of baryons and photons
around the dark matter gravitational potential wells. Whereas photons decoupled
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right after recombination, the baryons kept trapped in the potential wells and their
density perturbations grew further. This means that the large scale structures we
can observe today, have grown from tiny perturbations initiated by dark matter [39,
44].
Depending on whether dark matter was non-relativistic or relativistic at decoupling,
it is called cold or hot, respectively. Dark matter with velocity dispersion between
these two extrema is called warm. The distance which a dark matter particle can
cover until it is gravitationally trapped is called free-streaming length. This means
that only density perturbations from scales of the free-streaming length are possible.
As hot dark matter has a large free-streaming length, structure formation at small
scales is washed out. This implies that hot dark matter favours a top-down ansatz
for structure formation: Smaller structures could only be produced by fragmentation
of larger ones. This is in contradiction to current N -body simulations and current
observations of the age of galaxies and galaxy clusters. Due to this, hot dark matter
is clearly disfavoured as the main dark matter component [45].
Cold dark matter, however, has become non-relativistic long before the matter dom-
inated era. With a small free-streaming length, perturbations on small scales are
possible and structure formation can evolve from a bottom-up approach. Taking
cold dark matter as initial condition for N-body simulations is in good agreement
with today’s observed large scale structures. However, some discrepancies appear
when comparing simulations with the realization in nature. For instance, the num-
ber of predicted satellite halos in the Milky Way exceeds the number of observed
dwarf galaxies [46, 47]. This is often referred to as missing satellites problem.
Therefore, warm dark matter, for instance, was taken into consideration with a free-
streaming length of the order of galaxies such that the formation of smaller struc-
tures is suppressed. By studying the growth of structures in galaxy clusters and the
Lyman-α-forest, a lower limit on the warm dark matter mass can be set, which is
quite stringent [48]. Another prominent alternative is interacting dark matter (IDM),
which is able to solve the aforementioned discrepancies arising in simulations [49].
However, Halo profiles, which cause problems within N-body simulations with re-
spect to cold dark matter are highly sensible to small deviations from the primor-
dial spectrum. Therefore, cold dark matter counts still as the preferred realisation
of dark matter. In particular, several astrophysical processes exist which could solve
these discrepancies [50, 51].

Consistent with Big Bang Nucleosynthesis. Furthermore, the dark matter can-
didate should also be in agreement with big bang nucleosynthesis (BBN). The theory
of big bang nucleosynthesis can predict the abundance of light elements which were
produced within the first three minutes after the big bang and is in very good agree-
ment with today’s observations [39]. For a more detailed review on this topic we
refer to Ref. [52].
Changes in the prediction of BBN could arise from the existence of additional rel-
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ativistic particles, for example. They could lead to a faster expansion rate, which
would result in an earlier freeze-out of the neutron-to-proton ratio and thus to a
higher He4 abundance [53]. But also decaying particles during the BBN can mod-
ify the predictions of big bang nucleosynthesis [54]. However, BBN predicts today’s
observations very precisely.

Consistent with Stellar Evolution. Finally, also the stellar evolution has to re-
main unchanged. For example, light, weakly interacting particles produced in the
hot plasma of stars could escape without further interactions and could, thus, lead
to an energy loss of the stars, which would modify the stellar evolution [55].

All in all, there are stringent requirements on the properties which a viable dark
matter candidate should feature. In the following we give an overview of different
proposed dark matter candidates and their current viability.

3.3 Dark Matter Candidates

In principle, two major approaches exist to explain the experimental discrepancies
discussed in Sec. 3.1. First, these observations could be evidence for dark matter and
could be described with the help of a (new) particle. Second, changes in theory on
the astrophysical scale could be necessary and sufficient such that the introduction
of new particles is not needed. After discussing the latter case, different dark matter
candidates will be addressed in the context of their viability regarding experimental
observations and the aforementioned criteria.

3.3.1 Alternative Theories without a Particle Candidate

Although it is well-established that something like dark matter has to exist (therefore
we already introduced “dark matter” as the possible solution in order to explain the
observations from the beginning of this thesis), we want to mention two of the most
discussed alternative approaches for completeness. However, both possible explana-
tions have serious drawbacks such that they cannot exist without any additional
non-baryonic matter.

Modified Newtonian Dynamics (MOND). A widely discussed alternative theory
in order to explain the observation of dark matter is Modified Newtonian Dynamics
(MOND) [56]. The motivation of this theory lies in the explanation of the discrep-
ancy in the observation of rotation curves not by the introduction of dark matter (cf.
Sec. 3.1.2), but by a breakdown of Newtonian dynamics in the limit of small accel-
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erations. In MOND, a constant of the dimension of an acceleration a0 is introduced

a2/a0 = MGr−2 (3.13)

such that the standard Newtonian dynamics is a good approximation for accelera-
tions much larger than the introduced constant a≫ a0. The behaviour in the other
limit a0 ≪ a gives rise to an acceleration and is described by an underlying theory,
see Ref. [57].
Already in 1999 it was claimed that resolving the virial discrepancy in galaxy clus-
ters is not possible only by MOND, but needs additional, undetected matter [58].
This was confirmed furthermore by the observations concerning the bullet cluster.
Although people still claim that MOND is a viable theory in combination with a
kind of not yet detected matter (which could be also baryonic) [59], the original
motivation of MOND - explaining the observation of rotation curves without any
additional matter - is not valid any more.

Massive Astrophysical Compact Halo Objects (MACHOs). Another alterna-
tive explanation in contrast to dark matter is the existence of Massive astrophysical
compact halo objects (MACHO). These are astronomical objects which are built out
of baryonic matter without emitting radiation. This definition would be satisfied
by black holes, neutron stars or different kinds of dwarfs, for instance. However, as
discussed before, observations of the cosmic microwave background, baryon acoustic
oscillations or the knowledge of the large scale structures set stringent limits on the
baryonic amount of matter. Regardless of the presence or absence of MACHOS, a
large fraction of non-baryonic matter is necessary to be consistent with experimental
observations. For a more detailed review about the status of MACHOS, we refer the
reader to Ref. [60].

3.3.2 Particle Dark Matter Candidates

The aforementioned theories tried to explain the observational discrepancies by
modifying gravitation or by an astrophysical explanation. In the end, however,
both approaches require an additional kind of matter to account for all observa-
tions. Therefore, different particle candidates are discussed in the literature trying
to solve the question of the nature of dark matter. Due to very detailed observa-
tions, stringent requirements on potential particle candidates are imposed. In order
to put the candidate studied in this work in the global context, a brief overview
of some of the most popular particle dark matter candidates is given in the following.
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Standard Model like Neutrinos. The most straightforward approach is the at-
tempt to explain dark matter by already well-known particles within the Standard
Model of particle physics. One once widely discussed candidate has been the Stan-
dard Model like neutrino. With an upper mass limit of mν < 2.05 eV (95 % C.L.) set
by tritium β-decay experiments [20], an upper bound on the relic density of roughly
Ωνh

2 . 0.07 [26] can be assumed. This is in contradiction to current measurements
of the relic density such that the neutrino as dark matter candidate cannot account
for the dominant component of dark matter. Even more stringent constraints arise
from combining PLANCK data and observations of the large-scale matter power
structure, as recently shown in Ref. [61]. Together with baryon acoustic oscillations
and the lower limit from neutrino oscillation experiments, the sum of the neutrino
masses is restricted to 0.05 eV <

∑
mν < 0.15 eV . As the neutrino was thermally

produced in the early universe and decoupled quite early relativistically at around
T ≈ 1 MeV [39], this makes the neutrino a prototype for hot dark matter. As dis-
cussed earlier, this characteristic disfavours the neutrino as a major ingredient of
dark matter [45]. However, small amounts of hot dark matter could be realized as
long as agreement with the large scale structure and the CMB data is ensured.

Sterile Neutrinos. One possible extension of the Standard Model is the introduc-
tion of right-handed neutrinos. They could simultaneously explain neutrino oscilla-
tions and as they are sterile with respect to weak interactions (apart from mixing),
they are considered as dark matter candidates [62]. In the simplest approach the
active neutrinos would have light masses whereas the sterile ones are quite heavy.
Through a see-saw like mechanism or some flavour symmetries it is possible to create
one light sterile neutrino in the keV-range, which could account for dark matter. As
recently shown, this kind of dark matter is under several assumptions still valid and
could explain dark matter, neutrino oscillations and baryon asymmetry [63, 64]. But
still, there are stringent bounds on such a warm dark matter particle [48, 65, 66].

Axions. The initial idea of introducing axions was to give a solution to the strong
CP-problem. This problem describes the contradiction between QCD allowing a CP-
violating flavour singlet interaction and the non-observation of the electric dipole
moment of the neutron. One possible solution to this problem is the introduction of
a Peccei-Quinn symmetry [67]. By breaking this global symmetry spontaneously, a
goldstone boson arises, the so-called axion. A review about axions and the strong
CP-problem is given in Ref. [68].
According to laboratory searches, stellar cooling and dynamics of supernova 1987A,
the axion has to be very light (ma . 0.01 eV) (see e.g. [26]). But as the calculation
of the relic density highly depends on the corresponding production mechanism, the
theoretically predicted value is quite uncertain. Nevertheless, it is still possible to
find a range in the parameter space where the axion fulfils all constraints and is
therefore still a viable dark matter candidate [69].
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Neutralinos. After discussing dark matter candidates arising from minimalistic ex-
tensions of the Standard Model, we focus now on the candidates which are given due
to Supersymmetry. An overview of the cornerstones of Supersymmetry is given in the
previous chapter 2. The most prominent and well-known particle is hereby certainly
the neutralino. In an R-parity conserving MSSM the neutralino can be the lightest
supersymmetric particle in a wide range of the parameter space and thus, represents
a good cold dark matter candidate. It belongs to the group of weakly interacting
massive particles (WIMPs). Its predicted relic abundance fits coincidentally very
well to the measured one. This is also often referred to as the WIMP-miracle and
makes it to one of the most intensively studied dark matter candidates. As shown
in Tab. 3.1, it is still in very good agreement with all experimental observations. As
the neutralino is the subject of the present work, we will devote further discussion
on its phenomenology to the later chapters.

Sneutrinos. The superpartners of the already discussed neutrinos are also con-
sidered as dark matter candidates. Left-handed sneutrinos are already ruled out
because of direct dark matter detection experiments or a too small relic abundance,
respectively [70, 71]. However, right-handed sneutrinos are still a viable option, but
already quite constrained. Whereas light sneutrinos are excluded by the discovery
of a Higgs boson with a mass of around 125-126 GeV, heavy sneutrinos can still be
a viable, but quite constrained dark matter candidate. For further details see for
instance Ref. [72].

Gravitinos. In case that SUSY is not only a global, but a local symmetry, super-
gravity could exist. This would result in a new particle: The gravitino which is the
superpartner of the graviton. For example, in gauge-mediated or gravity-mediated
scenarios, the gravitino can be the lightest supersymmetric particle and is stable.
Thus, it can also be a possible dark matter candidate. However, they have to face
stringent constraints concerning their mass, their life time and the reheating tem-
perature. Long lived gravitinos, for instance, can give rise to problems for cosmology.
Also, if the reheating temperature is not low enough, an overproduction in the early
universe is caused [26]. But there are many interesting scenarios depending on the
next-to-lightest supersymmetric particle in which these constraints can be circum-
vented [73, 74].

Axinos. When extending the MSSM with the Peccei-Quinn mechanism, a super-
partner to the axion is introduced: the so-called axino, which can be also a viable
dark matter candidate. Axinos are extremely weakly interacting particles since their
couplings are suppressed. Depending on the way Supersymmetry is broken the axino
has a mass between the eV and GeV scale [73, 75].
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WIMPless Dark Matter. More recently there is also discussion about the so-called
WIMPless dark matter. Hereby, it is claimed that the existence of a WIMP-miracle
does not necessarily imply the existence of WIMPs as dark matter. In WIMPless
models, dark matter is part of a hidden sector and can feature scalar or fermionic
properties. On the basis of the WIMPless ansatz, models can be introduced where
particles have naturally the right thermal relic density, but neither weak-scale masses
nor weak force interactions [76]. This opens up new room for experimental tests. One
possibility and recently discussed realization, for example, is isospin-violating dark
matter, which is still in agreement with all current collider and low-energy bounds
[77].

Dynamical Dark Matter. A quite new development is the approach of dynamical
dark matter. The idea of dynamical dark matter is quite different in comparison
to the usual approach. Whereas normally one dominant dark matter candidate is
assumed, the theory of dynamical dark matter is not based on one stable dark
matter particle which accounts for most of the observed dark matter. In this ansatz, a
whole ensemble of different, not necessarily stable dark matter candidates is assumed,
which is balanced with the relic density [78]. A quite natural realization is found in
the framework of large extra dimensions with an infinite tower of Kaluza-Klein states.
A proof of principle is given in [78], where the KK excitations of a bulk axion makes
the dark matter ensemble. It is shown that this is in agreement with all up now
known collider, astrophysical and cosmological constraints and should be taken into
consideration in order to identify the nature of dark matter.

Further Candidates. There are a lot of other extensions to the standard model
with corresponding dark matter candidates, which cannot be mentioned all in detail
at this point. For instance, in the framework of universal extra dimensions with con-
served KK-parity the lightest Kaluza-Klein particle is stable and provides a suitable
dark matter candidate, which is similar to the neutralino [79].
Another simple extension to the standard model is the inert doublet model. In this
model, a second Higgs doublet with complex scalar fields is introduced, which cou-
ples to Standard Model scalars and gauge bosons, but not to fermions. This model
incorporates a viable dark matter candidate and provides an interesting phenomenol-
ogy as the SM-like Higgs boson is the main exchange particle between the dark and
visible sector [80].
A huge variety of other candidates is discussed in literature, like Champs [81] or
Wimpzillas [82]. For more details we refer to reviews in Refs. [26, 39, 83, 84].

Conclusions. We have discussed various dark matter candidates and approaches
to explain the observation of dark matter in general. From now on, we focus only
on the neutralino as a dark matter candidate. As this particle naturally evolves out
of Supersymmetry and is in agreement with all current observations, this is highly
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I. II. III. IV. V. VI. VII. VIII. IX. X. Result

DM candidate Ωh2 Cold Neutral BBN Stars Self Direct γ-rays Astro Probed

SM Neutrinos × × X X X X X – – X ×

Sterile Neutrinos ∼ ∼ X X X X X X X! X ∼

Neutralino X X X X X X X! X! X! X X

Gravitino X X X ∼ X X X X X X ∼

Gravitino (broken R-
parity)

X X X X X X X X X X X

Sneutrino ν̃L ∼ X X X X X × X! X! X ×

Sneutrino ν̃R X X X X X X X! X! X! X X

Axino X X X X X X X X X X X

SUSY Q-balls X X X X ∼ – X! X X X ∼

B1 UED X X X X X X X! X! X! X X

First level graviton UED X X X X X X X × × X ×

Axion X X X X X X X! X X X X

Heavy photon (Little
Higgs)

X X X X X X X X! X! X X

Inert Higgs model X X X X X X X X! – X X

Champs X X × X × – – – – X ×

Wimpzillas X X X X X X X X X ∼ ∼

Table 3.1: Test performance of selected DM candidates.The Xsymbol is used when the
candidates satisfy the corresponding requirement, and it is accompanied by a
! symbol, in the case that present and upcoming experiment will soon probe a
significant portion of the candidate’s parameter space. If the requirement can
be satisfied only in less natural, or non-standard scenarios, or in the case of
tension with observational data, the symbol ∼ is used instead. Candidates with
a ∼ symbol in the last column, where the final result is shown, should still be
considered viable. If one of the requirements is not satisfied, then the symbol ×
is used, and since these requirements are necessary conditions, the presence of a
single × is sufficent to rule out the particle as a viable DM candidate. Overview
table taken from [39] and slightly modified.
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motivated. In the light of the recent discovery of a Higgs boson, the realization of
Supersymmetry and thus a neutralino as dark matter particle is very interesting.
However, we want to stress clearly at this point that there is also the possibility of
the coexistence of different dark matter particles. Assuming that the studied particle
is only subdominantly contributing, the lower bound of the relic density is weakened.
The upper bound though, remains a strict limit.
In addition to that, the standard cosmological model, the ΛCDM model, is usually
assumed. One should be aware that constraints on dark matter could change under
the assumption of another model.
After this short overview of different possible dark matter candidates, we focus in
the following on the status of current dark matter searches, in particular regarding
WIMPs.

3.4 Current Status of Dark Matter Searches

Since the existence of dark matter has been acknowledged, explicit searches are the
next step in order to determine its nature. As a weakly interacting massive particle
(WIMP) is the mostly favoured and discussed candidate, different search strategies
are pursued in order to find such a particle.
Fig. 3.4 shows the possible three categories of processes which a WIMP and a stan-
dard model particle can feature via an effective coupling. As depicted in Fig. 3.4,
depending on the specific process different search strategies can be used: direct,
indirect and collider searches.
In the following, we want to give a brief overview of the current status of these
searches, in order to set them into the context of our study.
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Figure 3.4: Schematic overview of processes involving dark matter and Standard Model
particles, and their corresponding search strategy.
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3.4.1 Indirect Detection

One possibility in trying to identify dark matter is via indirect detection experiments.
The basic principle is to detect signatures of annihilating or decaying dark matter
particles into SM particles, which after showering and hadronization give rise to
energetic cosmic rays of charged particles (like electrons and positrons, protons and
antiprotons, deuterium and antideuterium), photons or neutrinos. According to the
obtained spectrum, one can draw a conclusion on the underlying standard model
particles and thus on the interaction of the DM particle with SM particles.
The biggest challenge concerning these searches is to look for channels and energy
ranges in which the astrophysical background is small compared to the expected
signal. From the obtained spectrum one can then draw conclusions on the initial SM
particles and thus on the interaction between DM particles and SM particles. This
allows us to get more hints concerning the properties of dark matter.
In the following, we discuss in particular three different types of particle fluxes which
are studied in the context of indirect detection experiments. Especially, Refs. [85–87]
are interesting concerning this topic and have been considered for detailed informa-
tion.

Charged Cosmic Rays. Key-experiments in the detection of charged cosmic rays
are the PAMELA and FERMI satellites, the HESS telescope and the AMS spec-
trometer. The latest results were published by FERMI (2011) and AMS (2013).
The left subfigure of Fig. 3.5 shows the positron fraction e+/(e+ + e−) as a function
of the energy. Most recently, the results of AMS-02 have been published, which are
depicted in red. They are in agreement with the results from Fermi (green) and
PAMELA (blue). The new results show much smaller errors and are obtained on
the basis of only 10% of the total data that is expected from AMS-02 in the fu-
ture. Consistently, for all experiments a steep increase in the energy spectrum of
the positron fraction is visible. This is, however, in disagreement with the expecta-
tion that the fraction of positrons decreases with increasing energy, assuming the
standard scenario in which cosmic ray positrons are mainly produced by secondary
processes. The observed clear enhancement for high energies is thus a sign for a new
physical phenomena, whether arising from particle physics or astrophysics, and is
in agreement among all experiments. By contrast, the spectrum of the antiproton
flux does not show any excess over background, which is depicted in grey in Fig. 3.5.
This is also still valid for the recent AMS data.
Interpreting the excess in the positron flux in terms of dark matter, its properties
are quite constrained: In order to explain the observation of a positron excess, while
seeing no deviation in the antiproton distribution, the dark matter particle has to
annihilate exclusively into leptonic channels. To reproduce the deviation from back-
ground for the e+ + e− spectrum, a particle of a few TeV and a large annihilation
cross section is required.
The search for antideuterons, which are boundstates of an antiproton and an an-
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Figure 3.5: Comparison of different indirect detection experiments regarding positron
fraction and antiproton flux. Left: positron fraction, compilation of Fermi,
PAMELA and recent AMS-02 data [88]. Right: antiproton flux, compilation of
older and recent data. Astrophysical background is depicted in grey [86].

tineutron, is also interesting in this context. They are supposed to be a smoking gun
evidence for dark matter, however, until now they have not been observed in nature
[87]. One expects antideuterons to be produced via coalescence of an antiproton and
an antineutron in connection with a dark matter annihilation event. Experiments
like GAPS and AMS-02 are searching for such states.

Photons. Having hints for dark matter from the positron flux, an enhanced γ-ray
emission would be consistently expected. In addition to that, a γ-ray signal is usually
expected to be a much more natural channel for dark matter searches, since it should
appear already for lower annihilation rates. The annihilation of dark matter gives rise
to prompt photons, either by direct photon production or by bremsstrahlung. Also
through the inverse Compton effect or synchrotron radiation, photons are assumed
to be produced. The main experiments in investigating these γ-rays above 1 GeV
are the FERMI satellite, but also Imaging Atmospheric Cherenkov Telescope (IACT)
are involved, like HESS and VERITAS. They use as target the Milky Way galactic
center, regions of the galactic halo, or large scale structures, for example.
For a long time, no anomalous signature above the background has been observed, in
contrast to the expected signal regarding the positron results. Thus, mainly upper
limits on the dark matter annihilation cross section have been set. In conclusion,
both observations are highly contradictory. Therefore, it has been already considered
that the enhanced positron signal results from an unknown astrophysical source, like
pulsars or supernovae remnants (see e.g. [89]). Quite recently, a claim of having found
some dark matter signal has been published. A γ-ray line around 130 GeV in the
publicly available FERMI data has been observed [90]. Up to now, this observation
has attracted quite some attention. However, it still has to be clarified whether the
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observation is a dark matter signal, statistical fluctuation, or a detector effect. A
study in Ref. [91] addressing the systematic uncertainties, however, sees still this
line. Clear exploration will be expected at least in 2015, when more data from the
inner galaxy will be available, which will allow a better analysis [92].
In summary, this is one of the most interesting recent developments, although it still
needs time to clarify this kind of signal.

Neutrinos. As neutrinos can cover large distances of dense matter quite unhin-
deredly in the galaxy, they are also among the interesting final state particles of dark
matter annihilation. Their detection, however, is more involved. They can only be in-
vestigated by secondary particles caused by interactions with target material, which
is also susceptible for cosmic muons. Recent experiments are SuperKamiokande or
Icecube, for instance.
However, these experiments have not detected any hint of dark matter so far such
that only bounds on the dark matter annihilation cross section and the scattering
cross section with nuclei have been set [93, 94].

Conclusions. Considering all results obtained by indirect detection experiments,
no clear hint for dark matter is given so far. Especially comparing the excess in
the positron flux with other surveys, the results are highly contradictory. As also
pulsars, for instance, could explain high energy cosmic ray positrons, it is still too
early to draw any conclusions. However, with the claim of a γ-ray line, this field has
achieved an enormous rise in attention. But also concerning this observation, one
has to wait for more data in order to judge whether it is a hint for dark matter, a
signal of astrophysical sources, or other statistical or systematic uncertainties.

3.4.2 Direct Detection

Another possibility of searching for dark matter signals is to look for scattering of
a dark matter particle with particles of the standard model, which is referred to as
direct detection. For further reviews Refs. [95, 96] are recommended.
In order to investigate this kind of interaction, detectors are designed to detect
potential WIMPs which are recoiling off a specific target material in dedicated ex-
periments. For weakly interacting particles the interaction rate is expected to be of
the order of roughly one event per 10 kg-days. In addition, radiative background is
also a serious problem, as it can fake a possible WIMP signal. Therefore, generally
a lot of effort is invested into the shielding of these experiments.
The detection principles can be divided into three categories: Probing dark matter
through phonons, ioniziation, and scintillation. As these different signal types are
sensitive in different energy regions, a combination of at least two different principles
is used in order to get the best possible distinction between background and signal,
in connection with a widely probed energy range. Fig. 3.6 gives an overview of the
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Figure 3.6: Measurement principles of different direct detection experiments. By probing
dark matter through interactions with standard model particles, signals can be
detected through ioniziation, scintillation and phonons according to the used
detector material. Usually, experiments make use of two of these detections
principles in order to obtain an involved signal to background ratio and to
access a wide energy range. Figure taken from [97].

used methods for the different existing direct detection experiments.
Direct detection experiments are able to probe spin-dependent (axial-vector) as well
as spin-independent (scalar) couplings. When a WIMP couples to the spin content
of a nucleon, the cross section for this scattering is proportional to J(J + 1) and
thus mainly sensitive to the angular momentum, but not to the number of nucleons.
By contrast, for the spin-independent case the mass of the target is the decisive fac-
tor. Therefore, spin-independent scattering dominates for experiments with heavy
targets [26].
Fig. 3.7 and Fig. 3.8 show the recent status of upper limits on the scattering cross
section set by direct detection experiments.
First, we focus on the spin-dependent results: As it can be seen in Fig. 3.7 the
most stringent constraint for pure neutron couplings above 6 GeV/c2 is provided
by XENON100 with a minimum WIMP-neutron cross section of 3.5×10−40cm2 [98].
XENON100 is an experiment which uses Xenon as target material and is operated
in the Gran Sasso National Laboratory in Italy. It makes use of scintillation and
ioniziation as detection principles. As the used isotopes 129Xe and 131Xe contain an
odd number of protons (by contrast to the even number of neutrons) XENON100
is not that sensitive to proton couplings. This can be seen in the second plot of
Fig. 3.7. Here, dedicated experiments like PICASSO [99], COUPP [100] or SIMPLE
[101] set the most stringent constraints. This results from their used target material
containing fluorine, which features an odd number of nucleons. Also IceCube pro-
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Figure 3.7: Upper limits on the spin-dependent WIMP-nucleon cross section at 90 % C.L.
On the left hand side, bounds on the cross section of a WIMP scattering off
a neutron is shown, on the right hand side the same for the proton. Figures
taken from [98].

vides stringent constraints on the scattering cross section above a WIMP mass of
around 30 GeV through certain channels [94].
The spin-independent results are depicted in Fig. 3.8. Here, also XENON100 sets
the most rigorous limit for a WIMP mass of above 8 GeV/c2. A minimum is reached
at 55 GeV/c2 with a corresponding cross section of 2.0 × 10−45cm2 [102]. These
limits are, however, in high tension with the results from DAMA/LIBRA, CoGeNT,
CRESST-II and quite recently also CDMS. All these experiments claim an excess of
events in their signal regions, but almost every one of them in a different region of
parameter space.
The first positive signal seen in a dark matter search was found in an annual
modulation of the DAMA/NaI experiment, which was confirmed later also by the
DAMA/LIBRA experiment [103]. Both scintillation experiments are located at the
Gran Sasso National Laboratory in Italy. The detected modulation is compatible
with the signal expected by dark matter particles of the Galactic Halo. The model
independent evidence of dark matter was further confirmed on an 8.9 σ confidence
level by taking into account the new data sets of DAMA/LIBRA [104]. But as shown
in Fig. 3.8 the favoured regions of DAMA are in tension with signals and exclusion
limits of the other experiments. To clarify if the observed annual modulation comes
from some unknown astrophysical source or if it is in fact an evidence for dark mat-
ter, a similar experiment DM-Ice is planned at the south pole [105].
Also CRESST-II claims to have found a sign of dark matter. 77 events were found in
the acceptance region, which cannot be explained by the known background sources.
A maximum likelihood analysis favours a WIMP mass of 12 GeV and 25 GeV for
a cross section of 3.7 × 10−41cm2 and 1.6 × 10−42cm2, respectively [106, 107]. But
as mentioned before, this result is in disagreement with the DAMA experiment (see
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Figure 3.8: Status of current direct dark matter searches regarding spin-independent
WIMP-nucleon scattering. The green/yellow band shows the 1σ/2σ expected
sensitivity of XENON100, the blue line the resulting exclusion limit at 90 %
C.L.. The recent status of other direct dark matter searches are shown by
lines of different colours. Exclusion limits are depicted for 90 % C.L., detec-
tion claims at 2σ. The grey area shows the favoured region of the CMSSM
parameter space. Figure taken from [102].

Fig. 3.8). In the 2006-2007 data set, CDMS had no sign for a dark matter excess
[110]. However, quite recently the CDMS experiment has updated its analysis and
claims now an excess, which might be compatible with the CoGeNT results. This is
depicted in more detail in Fig. 3.9, which shows a zoom of the parameter plane of
Fig. 3.8, but with the newly published CDMS excess. They claim now an excess at
10 GeV/c2 with 2.4×10−41cm2 [108]. This is compatible with the results by CoGent
claiming an excess at around 7 GeV with a cross section of around 10−40 cm2 [111,
112]. Whereas these two experiments are in agreement, they are still in tension with
the other experiments, especially with XENON10 and XENON100, which already
excluded this region.
All in all, it is quite difficult to draw a conclusion at this point, as there are lot of con-
tradictory observations and exclusion limits. Therefore upgrades and new detectors
are developed to get a step further in identifying the nature of dark matter.

3.4.3 Collider Searches

The pair production of dark matter particles is the third interaction possibility and
opens the opportunity to look for dark matter at colliders. In many models this in-
teraction occurs via an exchange of a heavy mediator which can then be integrated
out at low energies. Under this assumption, an effective field theory approach is
possible, where the interaction is described via a higher dimensional operator. This
allows one to study dark matter production in a model independent way and to set
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Figure 3.9: Zoom in the parameter plane shown in Fig. 3.8 with newly updated CDMS
results. Figure originally published in [108], version with labels taken from
[109].

limits to different interaction possibilities at the same time.
As the final state dark matter particles are not visible in detectors, analyses are
focused on detecting initial state radiation. By setting limits on mono-photon or
mono-jet cross sections in collider searches, constraints can be derived on the coeffi-
cients multiplying these effective operators, which are connected to the suppression
scale where new physics appears. These constraints can then be translated into
bounds on the dark matter-nucleon scattering cross sections probed in direct detec-
tion experiments.
Especially for low WIMP masses, collider searches can be more sensitive than direct
detection searches, as already shown in analyses for LEP [113], Tevatron [114], LHC
[115–117] or the future ILC [118, 119]. On top of that, this approach does not suf-
fer from astrophysical or nuclear uncertainties. Therefore, a combination of collider
searches together with searches of direct detection experiments can strengthen the
already strong limits.
The current status of these searches at the LHC is depicted in Fig. 3.10 for the AT-
LAS and in Fig. 3.11 for the CMS experiment. Both figures show the upper limit on
the WIMP-nucleon cross section at 90% C.L. in dependence of the WIMP mass for
spin-independent and spin-dependent interactions. For each effective operator the
corresponding bound on the cross section is shown. The ATLAS study distinguishes
five different effective operators: Assuming quarks in the initial state, a scalar (D1)
and vector operator (D5) are studied. The scalar contact operator D11 takes into
account gluons in the initial state. For the spin-dependent case, an axial-vector like
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Figure 3.10: 90% C.L. limits on the WIMP-nucleon scattering cross section in dependence
of the WIMP mass at the ATLAS experiment. The thick lines are the ob-
served bounds excluding theoretical uncertainties. The limits involving quarks
assume four light flavours with equal coupling strength to the WIMPs. For
comparison, the limits of different direct detection experiments are shown. On
the left hand side the spin-independent case is depicted. The scalar effective
operator D1 and vector like operator D5 describe a coupling to quarks in
the initial state. By contrast, the scalar operator D11 assumes gluons in the
initial state. On the right hand side the spin-dependent case is shown. Both
operators assume quarks in the initial state, with D8 being an axial-vector
and D9 a tensor operator. For more details we refer to Ref. [120], from where
the figures are taken.

contact operator D8 and a tensor like operator D9 are considered. In all cases which
involve quarks, four light flavours with equal coupling strength to WIMPs are as-
sumed.
In the CMS study only two cases are distinguished. For the spin-independent inter-
action a vectorial effective operator is considered, for the spin-dependent case an
axial-vector one.
Both analyses show clearly that collider searches feature a very good sensitivity in
the low WIMP mass region. Especially, for masses lower than 10 GeV the LHC is a
powerful tool and more sensitive than direct searches. As depicted in both figures,
the LHC exceeds the stringent limits of the CDF experiment at Tevatron.
Quite recently it was shown in Ref. [117] that for many models with an s-channel
dark matter coupling to qq̄ pairs, not only the production of a dark matter pair via
a heavy mediator, but also the production of a qq̄ pair in the final state is interesting
for setting bounds on the dark matter coupling. Having the same underlying theory,
upper limits on the respective effective coupling can be translated into each other.
In the analysis of [117] it has been shown, that the experimentally obtained limits
on the quark contact interaction at the LHC give stronger translated limits on the
dark matter coupling than dedicated searches for dark matter pair production.
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Figure 3.11: 90% C.L. upper limits on the WIMP-nucleon scattering cross section in depen-
dence of the WIMP mass at the CMS experiment. In this study interaction
between two quarks and a dark matter pair is assumed, with the WIMP be-
ing a Dirac fermion. On the left hand side the spin-independent case under
the assumption of a vector effective operator is depicted. The spin-dependent
case with an axial-vector operator is shown on the right hand side. For further
comparison limits, of other direct detection experiments are shown. For more
details we refer to Ref. [121], from where the figures are taken.

When assuming a certain model, like Supersymmetry, more specific searches can be
performed. Typically, experiments look for events with a high final state multiplic-
ity and large missing energy. Such a signature is expected if heavy supersymmetric
particles get produced at the collider and decay via cascades to the lightest super-
symmetric particle. This can be the lightest neutralino, which is a stable particle
and a good cold dark matter candidate. Escaping the detector unhinderedly, this
leads to the expectation of large missing energy.

Conclusions. We know many observational hints for the existence of dark matter.
With the help of different theories and particle species we are able to give possible ex-
planations for the invisible matter of our universe. On the experimental side, collider
searches are still only able to set exclusion limits on possible dark matter couplings
(see Sec. 3.4.3), direct searches, however, claim the first experimental excesses in
detecting dark matter. But as discussed in Sec. 3.4.2, although some collaborations
agree, most observations are still contradictory. The very same is true for indirect
searches.
As for the analysis studied in this thesis the relic density sets the most stringent
constraint, only this bound will be considered. However, it will be interesting what
the future will tell us regarding direct and indirect detection, as well as collider
searches.
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As in this thesis the impact of one-loop corrections on the relic density is studied,
we focus in this chapter on the calculation of the relic density in order to discuss
different sources of uncertainties in the second section.

4.1 Calculation of the Relic Density

First, we discuss the calculation of the relic density starting with the Boltzmann
equation. Detailed literature on different aspects of the here shown derivation can
be found in Refs. [44, 122–124].

4.1.1 The Boltzmann Equation

A distribution of an ensemble of particles within a certain phase space can be de-
scribed by the Liouville equation. If the particles of this ensemble interact only
on short distances, and one can assume that at most two particles are interacting
with each other (which means that their density is not too high) the system can be
described by the Boltzmann equation

L̂[f ] = C[f ], (4.1)

where L̂ stands for the Liouville operator, which describes the change of the particle
phase space density per time. The collision operator C models the rate of change
in the number of particles per phase space volume due to the interaction with other
particles (for more details on hydrodynamics in astrophysics see e.g. Ref. [125] and
references therein). As the particles which existed during the evolution of the uni-
verse, were relativistic, a covariant and relativistic generalization of the Liouville
operator has to be considered

L̂ = pα
∂

∂xα
− Γα

βγp
βpγ

∂

∂pα
. (4.2)

By further assuming the universe to be homogeneous and isotropic, the phase space
distribution function of particles simplifies to f = f(| #»p |, t). In the Robertson-Walker
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metric, the Liouville operator can be written as

L̂[f(E, t)] = E
∂f

∂t
− ȧ

a
| #»p |2 ∂f

∂E
, (4.3)

with a being the scale factor of the expansion of the universe.
We use the following definition of the number density

n(t) =
g

(2π)3

∫
d3p f(E, t), (4.4)

where g accounts for the number of degrees of freedom of the corresponding particle.
Taking into account Eq. (4.3) the ansatz of Eq. (4.1) can be integrated by parts such
that we arrive at

ṅ + 3Hn =
g

(2π)3

∫
C[f ]

d3p

(2π)3E
, (4.5)

with H ≡ ȧ/a being the Hubble expansion rate. Further details regarding the
derivation of the Liouville operator in the Robertson-Walker metric can be found in
Refs. [44, 124].
In a second step we focus on the derivation of the collision operator C. For the time
being, we consider only annihilation processes of dark matter particles into Standard
Model particles χ(p1)χ̄(p2) ↔ X(k1)X̄(k2), and vice versa. The collision term can be
written in the form

C =
1

2 gχ

∑

X

∫
d3k1

(2π)32ω1

∫
d3k2

(2π)32ω2

∫
d3p2

(2π)32E2

(2π)4δ(4)(p1 + p2 − k1 − k2)

×
[
|M|2χχ̄→XX̄ f(E1)f(E2)[1 ± g(ω1)][1 ± g(ω2)]

− |M|2XX̄→χχ̄ g(ω1)g(ω2)[1 ± f(E1)][1 ± f(E2)]
]
, (4.6)

with pµ = (E, #»p) and kµ = (ω,
#»

k ). The squared matrix elements contain already
the summation over all possible Standard Model particles X, as well as the summa-
tion and averaging over internal degrees of freedom. The factors g(ω1,2) stand for the
Fermi-Dirac or Bose-Einstein distribution functions of the Standard Model particles,
whereas the factors f(E1,2) describe the distribution of the dark matter particles. As
we are interested in regimes where for non-relativistic dark matter T ≪ E holds, the
quantum statistics can be neglected and a Maxwell-Boltzmann distribution f(E1,2)
can be assumed. Thus, we can also neglect the distribution of the final state par-
ticles in the following. Due to the assumption T ≪ E for the non-relativistic dark
matter particles, the approximation of [1 ± f(E1)] → 1 is possible, and as a result
of momentum conservation [1 ± g(ω1)] → 1 also holds.
Considering these assumptions, we can further simplify the expression of Eq. (4.6).
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Taking into account also CP -invariance we finally arrive at

C =
1

2 gχ

∑

X

∫
d3k1

(2π)32ω1

∫
d3k2

(2π)32ω2

∫
d3p2

(2π)32E2
(2π)4δ(4)(p1 + p2 − k1 − k2)

× |M|2χχ̄→XX̄ [feq(ω1)feq(ω2) − f(E1)f(E2)] . (4.7)

As in thermal equilibrium annihilation and creation processes should happen equally,
we have substituted g(ω1)g(ω2) → feq(E1)feq(E2) when going from Eq. (4.6) to
Eq. (4.7), assuming zero chemical potential for the Standard Model particles X.
Integrating now over the two momenta of the final state particles XX̄ and defin-
ing the relative velocity of the two annihilating particles χχ̄ according to vrel ≡
(E1E2)

−1
√

(p1 · p2)2 −m4
χ the expression of Eq. (4.7) can be written as

C =
1

2 gχ

∑

X

∫
d3p2
(2π)3

2E2 vrel σχχ̄→XX̄ [feq(E1)feq(E2) − f(E1)f(E2)] . (4.8)

The Maxwell-Boltzmann distribution f(E1,2) of the dark matter particles can be ex-
pressed in terms of the distribution in thermal equilibrium and the part containing
the chemical potential µ as follows f(E1,2) = feq(E1,2) e

−µ
T . This allows us to factor

out the Maxwell-Boltzmann distribution of thermal equilibrium feq(E1,2). Perform-
ing the last integration of Eq. (4.5) the collision term is then given by

gχ
(2π)3

∫
C[f ]

d3p1
(2π)3E1

= −〈σvrel〉(n2
χ − neq

χ
2) (4.9)

with the thermal averaged cross section defined as

〈σ vrel〉 =
g2χ

neq
χ

2

∫
d3p1
(2π)3

∫
d3p2
(2π)3

vrel σχχ̄→XX̄ feq(E1)feq(E2). (4.10)

To this end, the Boltzmann equation can be written in the well-known form

ṅχ + 3 H nχ = −〈σvrel〉(n2
χ − neq

χ
2). (4.11)

In the very young universe, at high temperatures, the Hubble expansion term can be
neglected and the interaction term is dominant. With cooling down, the number den-
sity of thermal equilibrium decreases with a Boltzmann factor, which is depicted as
a solid line in Fig. 4.1. However, at some point, the particles become non-relativistic
and their interaction rate is smaller than the Hubble expansion rate of the universe,
until the former can be completely neglected. This point of chemical decoupling at
which no annihilation processes take place anymore, is called freeze-out. Since then,
the comoving number density stays constant (dashed line in Fig. 4.1) and results in
the today’s measurable relic density.

53



4 Dark Matter Relic Density

Figure 4.1: Overview of the evolution of the comoving number density in dependence of
time in parameters of x (for further details see 4.1.4) in the early universe. The
dark matter comoving number density in equilibrium is depicted as solid line.
At freeze-out, the chemical decoupling takes place such that the actual number
density follows the dashed line. Graphic taken from [126], originally published
in [44].

4.1.2 Boltzmann Equation including Coannihilation Processes

Up to now, we have neglected other supersymmetric particles which could interact
with the lightest supersymmetric particle, the dark matter particle. However, in
Ref. [127] it was shown the first time that coannihilation processes, the interaction
of a particle that is almost mass degenerate with the dark matter particle, can con-
tribute significantly to the dark matter relic abundance. A detailed derivation of the
Boltzmann equation including coannihilation processes can be found in Refs. [128,
129].
To include all possible interactions, we consider N supersymmetric particles χi where
i = 1, . . . , N with the corresponding masses mi and their internal degrees of free-
dom gi. Considering R-parity conservation, we assume the following mass ordering
mχ ≡ m1 ≤ m2 ≤ · · · ≤ mN . Similar to the derivation of the Boltzmann equation
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for a single annihilation channel, now a set of Boltzmann equations can be derived

ṅi + 3 H ni = −
N∑

j=1

〈σijvij〉(ninj − neq
i n

eq
j )

−
∑

X

∑

i 6=j

[〈σ′
Xijvij〉(ninX − neq

i n
eq
X ) − 〈σ′

Xjivij〉(njnX − neq
j n

eq
X )]

−
∑

i 6=j

[Γij(ni − neq
i ) − Γji(nj − neq

j )], (4.12)

where X and Y describe a set of all Standard Model particles. The first term of
the right hand side of Eq. (4.12) denotes the annihilation processes of different
supersymmetric particles χiχj with the total cross section

σij =
∑

X

σ(χiχj → X). (4.13)

The second term describes χi → χj conversions by scattering off the cosmic thermal
background of Standard Model particles with the corresponding inclusive scattering
cross section

σ′
Xij =

∑

Y

σ(χiX → χjY ). (4.14)

The last term considers χj decays, with

Γij =
∑

X

Γ(χi → χjX) (4.15)

being the decay rate. The relative velocity between two annihilating particles χiχj

is defined similarly to the previous case

vij =

√
(pi · pj)2 −m2

im
2
j

EiEj
. (4.16)

As all supersymmetric particles will finally decay into the lightest supersymmetric
particle, we can simplify the coupled Boltzmann equations to a single one depending
on the number density of the lightest supersymmetric particle with n =

∑N
i=1 ni.

Performing this sum, the second and third term of Eq. (4.12) cancel, and we end up
with

ṅ+ 3 H n = −
N∑

j=1

〈σijvij〉(ninj − neq
i n

eq
j ). (4.17)
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Nevertheless, the scattering of supersymmetric particles off the thermal background
plays a crucial role. As the number density ni of the supersymmetric particles is
Boltzmann suppressed due to their non-relativistic behaviour, the number density
nX of the relativistic Standard Model particles is much higher. With the scattering
cross section σ′

Xij being of the same order of magnitude as the annihilation cross
section σij , the scattering rate is much higher than the annihilation one. There-
fore, the supersymmetric particles remain in thermal equilibrium with the thermal
background and their ratios can be assumed to be equal to their equilibrium ones

ni

n
≃ neq

i

neq
. (4.18)

Thus, the Boltzmann equation can be written as

ṅ + 3 H n = −〈σeffv〉(n2 − n2
eq). (4.19)

This equation looks quite similar to Eq. (4.11), but the annihilation rate is substi-
tuted by

〈σeffv〉 =
∑

ij

〈σijvij〉
neq
i

neq

neq
j

neq
(4.20)

and takes now into account also coannihilation processes. Such processes are usually
Boltzmann suppressed

neq
i

neq
∝ exp[−(mi −mχ)/T ], (4.21)

unless a second particle is almost mass degenerate with the dark matter particle.
Assuming the lightest neutralino to be the dark matter particle, a light stop with
a rather long lifetime can be such a degenerate NLSP, for instance. In this case,
neutralino-stop coannihilation becomes possible. For an even smaller mass gap stop-
stop annihilation can also play a crucial role. It was claimed in Ref. [127, 130, 131]
for the first time that by neglecting coannihilation processes, errors of more than
two orders of magnitude can occur regarding the relic density calculation.
Therefore, the consideration of coannihilation processes is well motivated and thus
those processes are topic of this thesis. For further studies on the importance of
neutralino-stop coannihilation compared to pure neutralino-neutralino annihilation,
we refer to Chapter 6.

4.1.3 Thermal Averaging

Some more effort is needed to calculate the thermal averaged effective cross section
of Eq. (4.20). Whereas Ref. [123] has derived this quantity only for annihilation pro-
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cesses, in Ref. [128] it has been extensively studied for the more general case including
also coannihilation processes. To this end, we want to follow Refs. [128, 129] for the
expressions which are relevant for the computation of the total (co)annihilation cross
section and the later relic density computation.
The total number density in equilibrium can be written as

neq =
∑

i

neq
i =

∑

i

gi
(2π)3

∫
d3pie

−Ei/T =
T

2π2

∑

i

gim
2
iK2

(mi

T

)
, (4.22)

with K2 being the modified Bessel function of the second kind of order two. From
now on, we assume Boltzmann statistics, which holds for the non-relativistic dark
matter particle.
The nominator of Eq. (4.20) can be reformulated

∑

ij

〈σijvij〉neq
i n

eq
j =

∑

ij

∫
Wijgigje

−Ei/T e−Ej/T
d3pi

(2π)32Ei

d3pj
(2π)32Ej

, (4.23)

with Wij = 4EiEjσijvij being the annihilation rate per unit volume. After some
reformulation of the integration variables and performing the first integration we
end up with

∑

ij

〈σijvij〉neq
i n

eq
j =

T

32π4

∑

ij

∫ ∞

(mi+mj)2
ds gigj pijWijK1

(√
s

T

)
, (4.24)

where pij denotes the momentum of particle χi (or χj) in the center-of-mass frame
of the pair χiχj. Defining now an effective annhilation rate Weff

∑

ij

gigjpijWij = g2χpeffWeff (4.25)

with

peff = p11 =
1

2

√
s− 4m2

1 (4.26)

we finally get

∑

ij

〈σijvij〉neq
i n

eq
j =

g2χT

4π4

∫ ∞

0

dpeffp
2
effWeffK1

(√
s

T

)
. (4.27)

57



4 Dark Matter Relic Density

Inserting Eq. (4.27) together with Eq. (4.22) in the initial expression of Eq. (4.20)
we arrive at

〈σeffv〉 =

∫∞
0
dpeffp

2
effWeffK1

(√
s

T

)

m4
χT
[∑

i
gi
gχ

m2
i

m2
χ
K2

(
mi

T

)]2 , (4.28)

where we consider annihilation as well as coannihilation processes. If we neglect
coannihilation processes this equation reduces correctly to the effective annihilation
rate given in Ref. [123].
With this convenient expression for the thermal averaged cross section (Eq. (4.28)),
and the general Boltzmann equation which now takes into account both, annihi-
lation and coannihilation processes (Eq. (4.19)), the usual derivation of the relic
density can be performed.

4.1.4 Computation of the Relic Density

In order to finally compute the relic density, we introduce the yield Y , the ratio of
the number density d and the entropy density s

Y =
n

s
. (4.29)

Assuming entropy conservation ∂t(a
3s) = 0 the effective Boltzmann equation

Eq. (4.19) can be expressed as

Ẏ = −s〈σeffv〉(Y 2 − Y 2
eq). (4.30)

Introducing the variable

x =
mχ

T
(4.31)

and performing some variable shuffling Ẏ = dY
dx

dx
dT

dT
ds

ds
dt

= dY
dx

x2

mχ
3HsdT

ds
the Boltz-

mann equation can be reformulated to

dY

dx
= −mχ

x2
1

3H

ds

dT
〈σeffv〉(Y 2 − Y 2

eq). (4.32)

As a next step, we make use of the Friedmann equation

H2 =
8πGρ

3
, (4.33)
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withG being the gravitational constant and ρ denoting the total energy density of the
universe. Taking also into account the definition of the effective degrees of freedom
for the energy density ρ = geff(T )π

2

30
T 4 and entropy density s = heff (T )2π

2

45
T 3, we

arrive at [123]

dY

dx
= −

√
π

45G

g
1/2
⋆ mχ

x2
〈σeffv〉(Y 2 − Y 2

eq), (4.34)

while the quantity g
1/2
⋆ describes the effective degrees of freedom of the universe and

is defined as

g1/2⋆ =
heff√
geff

(
1 +

T

2heff

dheff
dT

)
. (4.35)

The variable Yeq denoting the yield at equilibrium is given by [128]

Yeq =
neq

s
=

45x2

4π4heff(T )

∑

i

gi

(
mi

mχ

)2

K2

(
x
mi

mχ

)
. (4.36)

By integrating Eq. (4.34) from x = 0 to x0 = mχ/T0 with T0 being the photon
temperature of the universe today, we get our aimed result, the current yield Y0.
Finally, today’s relic density can be calculated. It is defined as the ratio of the
actual density of the universe ρ0χ to the critical density ρcrit, and can be expressed
in dependence of the just derived parameter Y0

Ωχ =
ρ0χ
ρcrit

=
mχs0
ρcrit

Y0. (4.37)

Hereby, the critical density is defined as ρcrit = 3H2/8πG and s0 denotes today’s
entropy density, which is s0 = 2π2

45
heff (Tγ)T 3

γ with Tγ = 2.72548 ± 0.00057 K [132].
Roughly speaking today’s relic density is approximately inversely proportional to
the thermal averaged total (co)annihilation cross section

Ωχh
2 ∝ 1

〈σeffv〉
. (4.38)

This is also visible in Fig. 4.1, where an increasing (co)annihilation cross section
leads to a smaller comoving number density and thus, to a smaller relic density.
Due to this connection, particle physics plays an important role in the calculation
of the relic density: The theoretical prediction of the relic abundance is highly de-
pendent on the mass configuration of the contributing particles and thus on the
specific parameter point within the MSSM. In order to pursue dedicated studies
of the parameter space including the constraints from relic density measurements,
sophisticated pieces of software have been developed. Public software tools like Mi-

59



4 Dark Matter Relic Density

crOMEGAs [133–135], DarkSUSY [136] and SuperIsoRelic [137] allow one to compute
the theoretical prediction of the relic density for a specific point in the parameter
space. However, such a computation has to face also possible sources of uncertainties,
which are the topic of the subsequent section.

4.2 Uncertainties within the Computation of the

Relic Density

The Cosmological Model. The relic density is an interesting parameter for con-
straining the parameter space. Therefore, it is crucial to be aware of uncertainties
which affect the experimental determination and the theoretical calculation of the
relic abundance. As particle physics as well as astrophysics and cosmology enter the
computation, all disciplines have to be considered for an overall error estimation.
A first possible source of uncertainty lies in the extraction of the relic density out of
experimental data. Although this is possible to a very precise value with data from
WMAP and PLANCK (see Eq. (3.12)), the analysis of the CMB, as discussed in
Sec. 3.1.4 is based on an essential assumption of the realisation of a standard cos-
mological model (ΛCDM). The ΛCDM model describes cosmology with the help of
essentially six different parameters: The energy content of baryons Ωb, the physical
dark matter density Ωc and the Hubble expansion rate H0. Moreover, the amplitude
As of the power law spectrum P0(k) ∝ Ask

ns−1 with the spectral index ns which
describes the initial perturbations and finally the optical depth parameter τ . This
minimal set of six parameters is used to fit the observed data with a likelihood
analysis and to extract a precise value of the relic density. It was shown that by
introducing more parameters the constraints on the relic density can be relaxed. In
Ref. [138] a study that considered five additional physical parameters (e.g. nonzero
neutrino masses, etc.) was performed and a relaxation of the relic density by a factor
two was found.
As the ΛCDM model is capable of describing our universe very well, there is no need
to enlarge the number of parameters at this point. However, one should be aware
of this assumption which enters the determination of the relic density from the very
beginning.

Hubble Expansion Rate. Another uncertainty arising from cosmology concerns
the assumptions that are made within the ΛCDM model. For instance, a varia-
tion in the Hubble expansion rate H0 before nucleosynthesis could be possible. In
Ref. [139], the consequence of a modified expansion rate was studied by introducing a
new dark density which varies with temperature in addition to the radiation density.
The Friedmann equation is then modified by a dark density ρD in addition to the
usual radiation density ρrad to the expression H2 = 8πG

3
(ρrad + ρD), and enters the

Boltzmann equation (see Eq. (4.32)). Thus, the freeze-out temperature is changed
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and the theoretical prediction of the relic abundance gets affected. Even small mod-
ifications, which would have no impact on the cosmological observations and would
still be in agreement with BBN, could change the relic density. In Ref. [139] it was
shown that such modifications could significantly change the relic density prediction,
but are still undetectable in cosmological observations, and would be still in agree-
ment with BBN. If one wants to take into account a possible variation in the Hubble
expansion, it is suggested to consider only an upper bound for the relic density. This
is also compatible with the possibility of dark matter being composed of several
components [139].

Effective Degrees of Freedom of the Universe. As pointed out in Ref. [140], the
calculation of the relic abundance depends on the effective number of relativistic
degrees of freedom of the universe at the freeze-out temperature (see Eq. (4.34)
and Eq. (4.35)). Usually, it is assumed that above the QCD confinement critical
temperature of Tc ∼ 200 MeV, the quark gluon plasma is weakly interacting due
to asymptotic freedom. This would mean that such particles could be treated as an
ideal gas. However, it was shown that at high temperatures this is not completely
true, and an improved equation of state has to be considered.
In Ref. [140] a correction factor for the coloured degrees of freedom was taken into
account in the derivation of geff and heff , which enter directly the relic density
calculation (cf. Eqs. 4.34 and 4.35). This correction was derived from lattice and
perturbative calculations. Taking these changes into account, the value of the relic
density was compared to the default value of DarkSUSY. This public tool, as well
as micrOMEGAs, uses a linear potential to describe the interaction between quarks
and gluons in that temperature regime, which almost corresponds to an ideal gas
behaviour. It was shown that by taking into account these QCD corrections, the relic
density is increased by 1.5-3.5 % in some example mSUGRA benchmark scenarios.
Therefore, it might be interesting to include these corrections in public tools like
micrOMEGAs or DarkSUSY.

Finite Temperature Effects. Furthermore, we have to consider that the calcu-
lation of the Boltzmann equation and thus of the required (co)annihilation cross
section has to be performed at finite temperatures. However, at finite temperatures
quantum mechanics cannot be described by the S-matrix alone. Instead, the expec-
tation value at zero temperature has to be replaced by the sum over a complete set
of states, such that perturbation theory leads to a corrected set of Feynman rules
for the S-matrix elements. This was analysed in several studies, see Ref. [141, 142].
Considering typical benchmark scenarios, it was shown that these effects are only of
the order of 10−4 and therefore below the detection limit of current and future relic
density observation experiments [142].
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Three-body Processes. In the calculation of the relic density, so far only the
(co)annihilation into two-body final states or three-body final states with a massless
gauge boson has been considered (see ansatz in Eq. (4.12)). However, it was shown
by Ref. [143] that taking into account the three-body final states consisting of a real
and a virtual massive particle such as WW ∗(→Wff̄ ′) and tt̄∗(→ tW b̄) could result
in an effect on the dark matter relic density. As shown in Ref. [143] though, this is not
a generic feature within the MSSM, but a threshold effect and thus parameter point
dependent. Also processes which are usually helicity suppressed can significantly
contribute, when considering an additional vector boson in the f f̄ final state [144].
However, public tools like micrOMEGAs or DarkSUSY do not take them fully into
account.

Determination of Mass Parameters. Another uncertainty that affects the pre-
diction of the relic abundance is based on the precision of the MSSM parameters
which enter via the computation of the different (co)annihilation processes. In order
to calculate the cross section of these processes in an underlying model, dedicated
software tools are necessary to relate the theoretical models, often defined at the
GUT-scale, to observable parameters at the SUSY-scale. Those programs solve the
renormalization group equations at two-loop order and calculate essential param-
eters like masses and couplings of supersymmetric particles including higher-order
corrections. Among the most used tools are SPheno [145], SOFTSUSY [146], Isajet
[147] and Suspect [21]. When using them, one has to be aware of the several sources
of uncertainties that depend on the precision of implemented routines and approxi-
mations, which in the end also affect the relic density computation.
In Ref. [148], the first broad comparison between the aforementioned programs was
performed in order to estimate the current theoretical uncertainty in using them. It
was found that the theoretical error is quite parameter point dependent, with espe-
cially the focus point region and high tanβ regime showing the largest error. This
study was also extended to investigate the error of these public tools on the relic
density prediction [149–152]. Generally, all investigated spectrum calculators were
quite well in agreement. However, even small differences in the computation of the
supersymmetric masses can have a serious impact on the relic density. In Ref. [152]
it was claimed that the spectrum uncertainties are larger than the experimental un-
certainty from PLANCK, or even WMAP. However, the spectrum calculators have
undergone an improvement since the appearance of the referenced paper, such that
a study with recent versions of the programs would be interesting.

Higher Order Corrections. Another source of uncertainty is related the precision
of the calculated (co)annihilation cross sections for computing the relic density. Cur-
rently available public tools like micrOMEGAs or DarkSUSY use only tree-level cross
sections with some effective couplings. A much more precise prediction of the relic
density could be achieved by taking into account full next-to-leading order calcula-
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tions in order to determine the (co)annihilation cross section. This would change the
computed relic density of around O(10%). The impact on the relic density of such
corrections will be discussed in more detail in Chap. 10.

Conclusions. Altogether, there are a few sources of uncertainties arising in the the-
oretical prediction of the relic abundance. Especially in the light of the precise data
from PLANCK, which were recently published, a common effort is needed to reduce
the theoretical uncertainties. This work focuses in particular on the improvement
of the precision of the (co)annihilation cross section by calculating next-to-leading
order corrections of O(αs), which promise to have a significant impact on the relic
density prediction.
In the subsequent chapter the tool DM@NLO is introduced. DM@NLO is developed in or-
der to serve as an extension to the publicly available tools and provides SUSY-QCD
corrections to the necessary coannihilation and annihilation processes.
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5 DM@NLO – a Tool for an
Improved Relic Density Prediction

5.1 Status of Loop Calculations to (Co)annihilation

Being aware of the different uncertainties which can arise in the computation of the
relic density, a common theoretical effort is needed to reduce possible error sources.
As public tools like MicrOMEGAs and DarkSUSY compute the relic density only based
on a tree-level calculation with few effective couplings (for some more details see
Sec. 8.3.3), one possibility is to increase the precision of the computation by consid-
ering loop corrections.
A first step to increase the precision of the (co)annihilation cross section, is to con-
sider more involved effective coupling approaches than those used in public dark
matter tools. This has been studied for instance by Ref. [153]. They have investi-
gated the effect of two-point function corrections to chargino and neutralino lines
on the annihilation cross section, as well as the influence of one-loop corrected neu-
tralino masses. It was shown that the size of the resulting corrections to the relic
density prediction highly depends on the point of parameter space, but can reach
around 3%.
The impact of electroweak corrections at full next-to-leading order to neutralino an-
nihilation was studied for selected scenarios by Refs. [154, 155]. It was demonstrated
that these corrections can be large and should be taken into account for a precise
relic density prediction. Thus, for global parameter studies it is advised to consider
a full next-to-leading order calculation, especially, if one desires to match the pre-
cision of the PLANCK satellite. In particular for electroweak one-loop corrections
they have developed the automatized one-loop package Sloops, which can be linked
to MicrOMEGAs, for instance. However, it is so far not optimized for performing a
full QCD next-to-leading order calculation.
Therefore, our collaboration develops the package DM@NLO, which provides the full
NLO-QCD corrections in order to obtain a more precise prediction of the relic density.
The starting point has been the study of one-loop corrections to the pure annihila-
tion processes of two neutralinos into quarks [156–158], where a significant impact
on the relic density was demonstrated. Although, not so many diagrams contribute
in the case of SUSY-QCD corrections than for electroweak corrections, they give
nevertheless rise to roughly the same impact on the relic density due to being pro-
portional to αs. An example will be shown in the next section.
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A first generic estimate of SUSY-QCD corrections on bino-stop coannihilation was
already performed in Ref. [159]. However, within the latter study only two out of
eight possible final states were considered (χ̃0

1t̃1 → bW+ and χ̃0
1t̃1 → t g) and the

leading QCD corrections were calculated. A significant impact on the neutralino relic
density was demonstrated, reaching more than 50% in some regions of the parameter
space.
However, the first full next-to-leading order calculation of O(αs) considering all pos-
sible coannihilation and annihilation channels is the aim of our common project. The
full calculation will be provided for public use in the software package DM@NLO.

5.2 The Software Package DM@NLO

The tool DM@NLO will provide all annihilation and coannihilation cross sections needed
for the calculation of the neutralino relic density at full next-to-leading order consid-
ering SUSY-QCD corrections. Fig. 5.1 shows an overview of all the processes that
are included or will be included in the near future.

Q

Q̄χ01

χ01 χ0i

χ0j

χ0i χ0iq

q̄ qq̃j

V,H

q

g

q̃j

q̃j

q̃i V,H

V,H

q̃i

q̃j

q

q̄

Figure 5.1: Schematic overview of the different processes for which DM@NLO will provide
SUSY-QCD corrections. The grey circle indicates all “internal” corrections in-
cluding vertex and propagator contributions. The gluon line gives rise to addi-
tional “external” corrections (box diagrams). The focus of this work is on the
neutralino-stop coannihilation into all final states.

All channels concerning neutralino-neutralino annihilation into heavy quarks are
already implemented within the package DM@NLO and have been extensively phe-
nomenologically studied (see Ref. [156–158]). The calculation and implementation
of neutralino-stop coannihilation is the aim of this thesis. The results regarding coan-
nihilation involving an electroweak vector or Higgs boson in the final state have been
already published [1]. The calculation of neutralino-stop coannihilation with a gluon
in the final state has been finalized. However, final plots are not yet shown, as a last
missing final cross-check has to be performed.
Within our collaboration we are also currently working on corrections to the pro-
cesses of stop-stop coannihilation. The implementation of the gaugino annihilation
processes into light quarks is also under development. In the future, we also plan to
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Spectrum Calculator

calculation of the sparticle mass
spectrum, mixing matrices and
precision observables

MicrOMEGAs

integration of Boltzmann equation
on the basis of the cross sections
computed by CalcHEP

cross sections which are provided
by DM@NLO supersede CalcHEP
cross sections

Output

theoretical prediction of the neu-
tralino relic density at next-to-
leading order to O(αs)

Input

setting input parameters according
to Les Houches Accord within a
model of the MSSM

CalcHEP

calculation of all relevant
(co)annihilation cross sections
at tree level

DM@NLO

calculation of all maintained cross
sections at next-to-leading order to
O(αs)

Figure 5.2: Flow chart of a typical numerical relic density computation involving DM@NLO

in the software chain.

extend the project to further models, like the NMSSM.
Providing the one-loop corrected cross sections as a tool for the community, it can
be used for a precise neutralino relic density prediction within parameter studies or
global fits, for instance. In Fig. 5.1 a flow chart of a typical numerical relic density
computation involving DM@NLO is depicted. The DM@NLO package can be used for all
specific models within an R-parity conserved MSSM in order to calculate the neu-
tralino relic density on the basis of cross sections at next-to-leading order. The user
can provide a usual input file according to the SUSY Les Houches Accord conven-
tions [160, 161], which will then be used to calculate the sparticle masses, mixing
angles and precision observables by a spectrum calculator of choice. The set-up has
been already tested for SoftSUSY, Suspect and SPheno. The latter is used for the
parameter study of this thesis. The calculated parameters are used by MicrOMEGAs to
compute the necessary (co)annihilation cross sections by using internally the built-in
version of CalcHEP. MicrOMEGAs is then able to calculate the neutralino relic density
by integrating the Boltzmann equation.
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In order to calculate the relic density on the basis of next-to-leading order processes,
the package DM@NLO, which is has been written in Fortran, can be easily linked as
a library to MicrOMEGAs. As soon as one process which is needed for the relic den-
sity calculation is provided by DM@NLO at next-to-leading order, the corresponding
tree-level cross section originally calculated by CalcHEP is substituted. This is made
possible due to a dedicated interface to MicrOMEGAs. The same kind of interface is
also planned for DarkSUSY in the near future.

5.3 DM@NLO and Neutralino Annihilation

The first published example that is part of the common project DM@NLO concerns
neutralino annihilation into heavy quarks [157, 158]. Although this is not part of
this thesis, we want to give a brief idea of the order of magnitude of the achieved
corrections to the relic density, in order to put it later in the global context. The
relevant tree-level diagrams are depicted in Fig. 5.3.
The full SUSY-QCD corrections of O(αs) have been calculated and it has been
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qqi˜

Figure 5.3: Tree-level diagrams which contribute to neutralino annihilation into heavy
quarks: s-channel exchange of a Z-boson and neutral Higgs boson (H0

k =
h0,H0, A0) as well as t-and u-channel exchange of squarks. Figure taken from
Ref. [157].

shown that a huge impact is caused by these corrections (see Ref. [158]). An idea of
the size of the corrections gives Fig. 5.4, in which for an mSUGRA example point
(m0 = 1800 GeV, m1/2 = 131 GeV, A0 = −1500 GeV, sgn(µ)= + and tanβ = 10)
the effect of the radiative corrections on the cross section (left panel) and the relic
density (right panel) is shown. In this example point, neutralino annihilation into
heavy bottom quarks contributes by 86 % to the total (co)annihilation cross section.
In the left panel, the cross section in dependence of the center-of-mass momentum
is depicted and clearly demonstrates a huge shift with respect to the result obtained
by a pure MicrOMEGAs calculation. The observed peak at around pcm = 20 GeV
arises from the resonance of the lightest Higgs boson. The light brown area in the
plot shows, in arbitrary units, the Boltzmann distribution function resulting from
thermal averaging (c.f. 4.28). It gives a ballpark, for the range of the center-of-mass
momentum pcm in which the relic density calculation is relevant. Due to sizeable
corrections to the cross section of processes which contribute significantly to the
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Figure 5.4: Impact of the SUSY-QCD corrections to neutralino-neutralino annihilation
into heavy quarks. The left panel shows the effect of the radiative correc-
tions on the cross section as a function of the center-of-mass momentum. The
right panel depicts the neutralino relic density in dependence of the gaugino
mass parameter m1/2. Different colours show the result by using the pure Mi-
crOMEGAs tree-level, the DM@NLO tree-level and the SUSY-QCD corrected results
by DM@NLO. Figures taken from Ref. [158].

total cross section, a clear shift of the WMAP preferred region of parameter space
is observed (see right panel of Fig. 5.4). In total, a correction of around 10 % with
respect to the effective tree-level calculation of MicrOMEGAs is obtained. This results
due to the fact that, in particular for low tan β, the resummed corrections which
are included in MicrOMEGAs are suppressed such that the SUSY-QCD corrections
get even more important. However, it should of course be noted that at the time
this study was performed, no Higgs particle had been discovered. Also more severe
constraints coming from the Planck satellite could not have been taken into account
at that time.

Conclusions. We have demonstrated that the full next-to-leading order corrections
to the annihilation processes show significant impact on the neutralino relic density.
Especially with the experimental constraints getting more and more precise, reduc-
ing the theoretical uncertainties becomes even more relevant. Motivated by the com-
pelling results for neutralino annihilation and the aforementioned first estimation of
a similar impact for neutralino-stop coannihilation [159], it was decided that DM@NLO
should be extended by the latter processes. Thus, we discuss in the following the
interesting phenomenology of neutralino-stop coannihilation, before proceeding to
the radiative corrections to these processes.
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Neutralino-Stop Coannihilation

The implementation of our calculation within the DM@NLO code is generic such that
it can be used for any neutralino-squark coannihilation process. As neutralino-stop
coannihilation is the most realistic scenario with respect to the recent experimental
constraints, however, we want to focus on this process in the following.
In order to discuss the phenomenology of neutralino-stop coannihilation broadly,
it is interesting to study its role within the global context. To do so, it is worth to
investigate its contribution to the total amount of the relic density and its connection
to current experimental bounds.
Thus, we address in the following the phenomenological motivation of neutralino-
stop coannihilation in general, study its characteristics within the pMSSM and have
a closer look at three different scenarios.

6.1 Phenomenological Motivation

There is ample motivation for scenarios featuring neutralino-stop coannihilation. In
the following, we want to discuss three different aspects, starting with the focus on
the neutralino relic density.

Neutralino Relic Density. In section 4.1.2 we have already discussed theoretically
the need of including coannihilation processes in order to obtain a precise and correct
prediction of the relic density. Now we want to further study the explicit contribu-
tion of neutralino-stop coannihilation in comparison to other channels.
The different 2 → 2 processes contributing to neutralino-stop coannihilation are
depicted in Fig. 6.1. In total, eight different final states are possible. First, there
are processes with a quark and a neutral, pseudo-scalar or charged Higgs boson in
the final state (h0, H0, A0, H±). Second, a neutralino and stop can annihilate into a
quark and an electroweak vector boson (Z,W±, γ), and finally, coannihilation into
a quark and a gluon (g) is possible. All processes have in common that they feature
an s-channel exchange via a quark and a t-channel exchange via a squark. However,
the u-channel exchange of a neutralino or chargino, respectively, does not exist for
a gluon or photon in the final state.
Those neutralino-stop coannihilation channels compete with other possible processes
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Figure 6.1: Tree-level diagrams contributing to neutralino-squark coannihilation. Eight
different processes can be distinguished with either a Higgs boson
(h0,H0, A0,H+), an electroweak vector boson (Z,W+, γ) or a gluon (g) in
the final state. A change of fermion types is marked by a prime within the
diagrams. Different mass eigenstates are denoted by a different index i, j, k, n.
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inital states final states

χ̃0
i χ̃

0
j tt̄, bb̄, qq̄, ll̄,WW

χ̃±
i χ̃

±
j tt̄, bb̄, qq̄, ll̄

χ̃0
1t̃1 th0, tH0, tA0, tH+, tZ0, tW+, tγ, tg
t̃1t̃

∗
1 h0h0,H0H0, A0A0,H+H−, h0H0, h0A0,H0A0

Z0h0, Z0H0, Z0A0,W±H∓

gg, gH0, gh0, gZ0, gγ
tt̄, bb̄, qq̄

t̃1 l̃ tl, bν

t̃1l̃
∗ tl̄

Table 6.1: Selection of the most relevant annihilation and coannihilation processes con-
tributing to the neutralino relic density.

contributing to the neutralino relic density. An overview of the most relevant contri-
butions is given in Tab. 6.1.
In order to thoroughly understand the interplay of annihilation and coannihilation
channels, we study their interplay in dependence of the relative mass difference be-
tween the neutralino and stop

∆M = (mt̃1 −mχ̃1
)/mχ̃1

. (6.1)

This parameter is motivated by the Boltzmann factor

neq
i

neq
∝ exp [−(mi −mχ)/T ] = exp[−(mi −mχ)/(mχ x)], (6.2)

which enters the effective coannihilation cross section (see Eq. (4.20)), and can be
reformulated in dependence of the relative mass difference using the definition of
Eq. (4.31). Thus, the relevant parameter is not the pure mass difference, but the
relative mass difference with respect to the dark matter mass.
We have chosen an example scenario (Scenario II of Tab. 6.2, which will be intro-
duced in more detail in Section 6.3) and have varied the bino mass parameter M1 in
order to obtain a change in the relative mass difference ∆M . For this study we have
used the default MicrOMEGAs package in combination with SPheno. Fig. 6.2 shows
the obtained results.
We show the relative weights of χ̃0

1χ̃
0
1-annihilation (dashed blue), χ̃0

1t̃1-coannihilation

(dashed red) and t̃1t̃
(∗)
1 -annihilation (dashed green) to the total thermal averaged

cross section in Fig. 6.2(a). Furthermore, the contributing subprocesses of neutralino-
stop coannihilation are depicted (dotted lines). When the neutralino and stop mass
are almost degenerate, stops are quite long-lived, and stop-stop annihilation plays
a crucial role. However, with the mass difference getting bigger, stop-stop annihi-
lation gets rapidly suppressed. This is caused by the dependence of the effective
coannihilation cross section (cf. Eq. 4.20) on two powers of the Boltzmann factor
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Figure 6.2: Contribution of χ̃0
1χ̃

0
1-annihilation (blue), χ̃0

1t̃1-coannihilation (red) and t̃1t̃
(∗)
1 -

annihilation (green) to the total thermal averaged cross section as relative
weights (a) and in absolute values (b) as well as their contributions to the
neutralino relic density (c).

74



6 Phenomenology of Neutralino-Stop Coannihilation

neq

t̃1
/neq ∝ exp[−(mt̃1 −mχ)/T ]. At around ∆M ≈ 0.1 the annihilation of two stops

gets less dominant, and neutralino-stop coannihilation starts to dominate as it de-
pends only on the single power of neq

t̃1
/neq ∝ exp[−(mt̃1 −mχ)/T ]. With larger mass

splitting between the neutralino and stop, all channels involving a stop in the initial
state are suppressed. This leads to an increase of the relative contribution of the pure
neutralino-neutralino annihilation, until it finally dominates the total cross section.
Furthermore, Fig. 6.2(a) shows the most important subprocesses contributing to
neutralino-stop coannihilation for Scenario II. The final state with a light Higgs bo-
son, especially, dominates the cross section by far. The processes with a Z boson
or a gluon in the final state are the next to dominant ones, whereas the W boson
contributes only to a much smaller extent. By contrast, the contributions of the re-
maining final states are almost negligible, and thus not shown. The visible spikes in
Fig. 6.2 are caused due to numerical instabilities of MicrOMEGAs. Further discussion
regarding the interplay of the different subprocesses to neutralino-stop coannihila-
tion is postponed to the subsequent sections.
In Fig. 6.2(b), the absolute contribution of the different processes to the thermal
averaged total (co)annihilation cross section times velocity is depicted. The different
contributions are shown in the same colour code as in Fig. 6.2(a). The solid black and
blue line are especially interesting. The black line shows the total (co)annihilation
cross section. The solid blue line shows the total cross section without taking into
account coannihilation processes, but only with pure annihilation. Here, it becomes
obvious, why it is necessary to consider coannihilation in order to obtain a precise
relic density prediction. In case of mass degeneracy the contributions originating
from χ̃0

1χ̃
0
1 or χ̃0

1t̃1 processes dominate by far the total cross section. One might
recognize further that the contribution of neutralino-neutralino annihilation to the
total (co)annihilation cross section (dashed dark blue) is not exactly the same as
the line considering pure annihilation (solid light blue). This arises from the number
density weighting factors which multiply each single (co)annihilation cross section in
case of the total effective (co)annihilation cross section (see Eq. 4.20 with Eq. 4.21).
This leads to the different behaviour in contrast to the pure annihilation cross sec-
tion (cf. Eq. 4.11). Moreover, it is clearly visible that for small mass differences
between the NLSP and LSP, stop-stop coannihilation is the driving process. Its
large cross section significantly enhances the total effective cross section, until it
finally abruptly ends due to Boltzmann suppression. In the intermediate mass dif-
ference range neutralino-stop coannihilation is important with its moderate cross
sections, until the dominance of neutralino-neutralino annihilation leads with small
cross sections to a smaller total cross section.
In order to obtain a value for the neutralino relic density which is compatible with
the measurements of WMAP and PLANCK, one needs a quite specific value for the
effective cross section. The connection between the relic density and the total effec-
tive thermal averaged cross section has been deduced in Eq. (4.38) and Eq. (4.34).
Roughly speaking, the relic density is approximately inversely proportional to the to-
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tal effective cross section. However, this is only an approximation, as the neutralino
mass, which has been varied for studying the dependence on the mass difference,
enters also directly equation Eq. (4.34).
In Fig. 6.2(c) the contribution of the different processes to the relic density is shown.
A grey band indicates the region which is favoured by the PLANCK measurements.
While for the dominating neutralino-neutralino annihilation the relic abundance is
too high, for dominating stop-stop annihilation the relic density is too small. How-
ever, in the region with significant contribution of neutralino-stop coannihilation the
relic density lies in the right ballpark. This emphasises the need of going beyond pure
neutralino-pair annihilation for the relic density prediction in order not to overclose
the universe, for example, by studying coannihilation.
This topic has been addressed by many publications considering different types of
coannihilation [162–166]. For a complete picture also stau coannihilation must not
be neglected [167]. As it receives only electroweak corrections, it is, however, not
relevant for this study.
At this point one should state that the importance of neutralino-stop coannihilation
depends strongly on the SUSY mass spectrum, and thus, on the studied parameter
point. However, it is a generally true statement that in particular the right admix-
ture of all kinds of (co)annihilation processes is important to finally obtain a precise
prediction for the relic density.

Electroweak Baryogenesis and the Naturalness of SUSY. A light stop is not
only interesting in order to obtain the right value of the relic abundance, it is also
motivated by several other phenomenological aspects: Electroweak baryogenesis, for
instance, might only be realized within the MSSM in the presence of light stops.
Therefore, light stop scenarios are extensively studied in the context of achieving
electroweak baryogenesis [168–170].
Another motivation for light stops arises when discussing the naturalness of SUSY
models. In terms of natural electroweak symmetry breaking a general bottom-up
approach expects higgsinos, stops and gluinos being not too far away above the elec-
troweak scale, whereas the rest of the spectrum could also be beyond the current
kinematic reach of the LHC. The LHC is able to probe a “natural” realization of
SUSY (for more details see Ref. [171]). However, a mass degeneracy between the
lightest neutralino and the NLSP weakens the exclusion potential on the third gen-
eration squark masses, since a degeneracy results in events with soft decay products
[172, 173] the detection is very sophisticated at a hadron collider.

Discovery of a 125 GeV Higgs Boson. Another reason for the phenomenological
interest in light stop scenarios, lies in the recent discovery of a Higgs boson of around
125 GeV [3, 4]. Interpreting the new particle as a light CP-even Higgs boson (h0)
within the MSSM, specific parameter configurations are favoured. This has been
studied in great detail during the last year, see for example Refs. [174–177]. All
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studies have in common that a light stop scenario is discussed as an interesting
possible realization. This is due to the mechanism through which the lightest Higgs
boson obtains its mass. Within the MSSM, the Higgs mass gets leading contributions
from loop corrections including stops. In the decoupling limit, when mA ≫ MZ , the
Higgs mass corrected by dominant one-loop corrections can be expressed as [175,
178]

m2
h0 ≈ m2

Z cos2 2β +
3g2m4

t

8π2m2
W

[
ln
M2

SUSY

m2
t

+
X2

t

M2
SUSY

(
1 − X2

t

12M2
SUSY

)]
, (6.3)

with Xt ≡ At − µ/ tanβ and the SUSY mass scale MSUSY =
√
mt̃1mt̃2 . It is obvious

that the mass of the lightest Higgs boson is highly dependent on the ratio Xt/MSUSY

when the stops are significantly heavier than the top quark. This means that in order
to get a Higgs mass in the right ballpark, a large Xt parameter is of interest, which
also leads also to a large stop mass splitting (cf. Eq. (2.87)) and thus to a light
stop scenario. The maximal contribution from stop mixing is obtained for |Xt| ∼√

6MSUSY. This means that especially a sizable trilinear coupling At is favoured.
For completeness one should also mention that studies are undertaken considering
not only the low scale MSUSY parameter space. In such a model the right relic density
could also be achieved by higgsino like neutralinos, however, these are in tension with
constraints of (g − 2)µ, for instance. For further details see e.g. [179].

Conclusions. There are ample reasons to study a light stop scenario and in par-
ticular neutralino-stop coannihilation in more detail. In order to find scenarios with
a dominating contribution of neutralino-stop coannihilation, we have performed a
parameter scan within the pMSSM, which shall be the topic of the following section.

6.2 Parameter Study within the pMSSM

In order to quantify the relative importance of the processes which contribute to
neutralino-stop coannihilation (see Fig. 6.1) a random scan in the phenomenological
MSSM (pMSSM) has been performed. The pMSSM, which was originally introduced
by Refs. [21, 22], counts 19 free parameters in total. For our study we have made
some simplifying assumptions such that we have taken into account eight indepen-
dent parameters (pMSSM8).
In the pMSSM8, the slepton sector is characterized by one single mass parameter
Mℓ̃. The squark sector is described by Mq̃1,2 for both, first and second generation
squarks, and the mass parameter Mq̃3 fixes the third generation left- and right-
handed squarks. Except for At, all the other trilinear couplings are set to zero, as
they do not have a significant impact on our study. For instance, the bottom quark
mixing is mostly driven by µ tanβ, but not by Ab. However, to be consistent with
the usual SLHA2-input parameter settings [161], we parameterize the top trilinear
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coupling as Tt = YtAt, with Yt being the top Yukawa coupling. Respecting the GUT
relation 2M1 = M2 = M3/3, the bino, wino and gluino masses can be defined through
the bino mass parameter M1. The Higgs sector is characterized by three parameters:
The higgsino mass parameter µ, the pole mass of the pseudoscalar Higgs boson mA,
and tanβ, the ratio of the vacuum expectation values of the two Higgs doublets. Ac-
cording to the SPA-convention [180] the soft-breaking mass parameters are defined
at the scale Q = 1 TeV.
For the calculation of the supersymmetric mass spectrum we have used SPheno (ver-
sion 3.2.11). The neutralino relic density as well as the individual (co)annihilation
channels have been evaluated using micrOMEGAs (version 2.4.1). The standard
model parameters have been defined according to Ref. [20].
In order to qualitatively study the behaviour of the different channels contributing
to neutralino-stop coannihilation, we have performed a random scan with 1.2 million
parameter sets, allowing the eight input-parameters lying in the following ranges

500 GeV ≤ Mq̃1,2 ≤ 4000 GeV,

100 GeV ≤ Mq̃3 ≤ 2500 GeV,

500 GeV ≤ Mℓ̃ ≤ 4000 GeV,

|Tt| ≤ 5000 GeV,

200 GeV ≤ M1 ≤ 1000 GeV, (6.4)

100 GeV ≤ mA ≤ 2000 GeV,

|µ| ≤ 3000 GeV,

2 ≤ tan β ≤ 50.

Fig. 6.3 shows the results which have been obtained by the scan in dependence of
the four most interesting input parameters M1, Mq̃3, Tt, and tan β. The influence
of the remaining input parameters, such as those related to first and second gener-
ation squarks, sbottoms, and sleptons, as well as the higgsinos, is less important in
this context. Therefore, the corresponding dependencies are not shown. The relative
contributions of all eight coannihilation final states are depicted. The corresponding
colour code can be found in the caption of Fig. 6.3. With each dot representing the

1During the writing of the thesis a new SPheno version was released, where a bug was reported
that has an impact on the Higgs mass for specific scenarios. Having Higgs bosons only in
the final state, this does not change the conclusion or the impact of the loop corrections to
neutralino-stop coannihilation. It might slightly change the result of the cut on the Higgs mass.
However, the uncertainties of different spectrum generators are non-negligible, which results in
a different admixture of (co)annihilation processes.
Therefore, a completely revised study is only reasonable, when considering all corrected
(co)annihilation channels within the DM@NLO project. As a new study would have to include
also corrections to neutralino-neutralino and stop-stop annihilation this is beyond the scope of
this thesis and therefore not yet addressed. However, it will be taken into account in the next
publication.
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contribution of one neutralino-stop channel, up to eight dots per parameter set can
appear.
The result, without considering any experimental constraints, is depicted in the first
row of Fig. 6.3. It can be seen that statistically the final state containing a top
and the lightest Higgs boson is the most dominant one with contributions up to
60 % in particular for large trilinear couplings. As this coupling is involved in the
Higgs-squark-squark-coupling appearing in the t-channel, the contribution of this
process is significantly enhanced. The next-to-largest contribution arises from the
gluon final state, which is dominant for a lower value of the trilinear coupling. The
heavy CP-even Higgs boson H0- and the Z0-boson contribute similarly, followed by
the contributions of the W±-boson and charged Higgs boson. The photon channel,
however, is less important.
Since we want to study the performed one-loop calculation on the basis of realistic
and thus experimentally viable scenarios, we apply the following three cuts on the
raw data

120 GeV ≤ mh0 ≤ 130 GeV, (6.5)

0.1064 ≤ Ωχh
2 ≤ 0.1334, (6.6)

2.77 · 10−4 ≤ BR(b→ sγ) ≤ 4.33 · 10−4. (6.7)

The first selection cut imposes a cut on the Higgs mass, which was measured to
be 125.5±0.2+0.5

−0.6 GeV [181]. For the following analyses we allow the Higgs mass to
vary a few GeV. This is motivated by the intrinsic theoretical uncertainties arising
from missing higher order corrections, the experimental error of the top quark mass
and parametric uncertainties from αs [182]. Moreover, uncertainties arise due to dif-
ferences in the spectrum calculators, for example, regarding the treatment of the
RGE-running, the extraction of the top mass etc. [183]. For the spectrum calculator
SPheno, which has been used for this analysis, an error of up to 2 % was estimated
[184]. The second cut chooses the data points which agree with the experimentally
determined relic density of Eq. (3.12) within a 5 σ confidence interval. As a third
selection cut, we consider the inclusive branching ratio of the most sensitive B-meson
decay, b → sγ. The limits on the branching ratio correspond to a 3 σ confidence
interval around the observed value of BR(b→ sγ) = (3.55 ± 0.26) · 10−4 [185].
The second row of Fig. 6.3 shows the impact of the cut on the Higgs mass. In order
to obtain the right ballpark of the Higgs mass, a large trilinear coupling is favoured,
which is clearly visible in the plot showing the dependence on Tt. However, too large
values of Tt are excluded in order to match the observed Higgs mass. This leads in
particular to a cut on scenarios involving t h0 final states with contributions up to
60 %. These large contributions have been achieved due to the significant impact of
large Tt values on the Higgs-squark-squark coupling in the t-channel exchange.
Imposing the cut on the relic density, which is depicted in the third row of Fig. 6.3,
two observations are especially striking. First, the correlated shape of the bino mass
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Figure 6.3: Relative contributions of the neutralino-stop coannihilation channels for the
generated parameter points as a function of the input parameters M1, Mq̃3 , Tt,
and tan β. The contributions of all eight final states are depicted: th0 (red), tg
(green), tZ0 (blue), tH0 (yellow), bW+ (cyan), tA0 (brown), bH+ (pink), and tγ
(grey). The results before applying any cuts (first row) as well as after cutting
on the Higgs mass (second row), the relic density (third row) and b → sγ (last
row) are shown. The parameters M1, Mq̃3 , and Tt are given in GeV.

80



6 Phenomenology of Neutralino-Stop Coannihilation

M1 Mq̃1,2 Mq̃3 M
ℓ̃

Tt mA µ tanβ mχ̃0

1

mt̃1
mh0 mH0

I 306.9 2037.7 709.7 1499.3 1806.5 1495.6 2616.1 9.0 307.1 350.0 124.43 1530.72
II 470.6 1261.2 905.3 1963.2 1514.8 1343.1 725.9 18.3 467.3 509.4 124.06 1342.77
III 314.4 2870.5 763.6 2417.7 1877.5 386.0 2301.5 10.3 316.5 371.9 123.43 367.45

Table 6.2: Three example scenarios chosen in the pMSSM, which will be considered in
this study. Given are the input parameters as described in the text, the lightest
neutralino mass mχ̃0

1
, the lightest stop mass mt̃1

, as well as the masses of the
light and heavy CP-even Higgs bosons mh0 and mH0 calculated by SPheno

(version 3.2.1. All values except for tan β are given in GeV.

Ωχh2 th0 tH0 tA0 bH+ tZ0 bW+ tγ tg Σφ+V Σtotal

I 0.114 38.5% – – – 3.4% 5.9% 0.2% 8.0% 48.0% 56.0%
II 0.116 24.6% – – – 10.7% 3.4% 0.3% 9.1% 39.0% 48.1%
III 0.111 14.2% 20.7% 0.7% 0.2% 1.2% 2.1% 0.1% 2.9% 39.2% 42.1%

Table 6.3: Neutralino relic density and relative contributions of neutralino-stop coannihi-
lation to the different final states for the example scenarios of Tab. 6.2. Σtotal

gives the sum of all listed contributions, Σφ+V indicates the sum of all final
states containing Higgs and electroweak vector bosons.

parameter M1 and the third generation squark mass parameter Mq̃3 gets even more
prominent. The symmetric shape arises from the specific mass difference between the
neutralino and the stop which is needed to feature neutralino-stop coannihilation.
Especially smaller values are favoured in order to obtain the right order of magni-
tude for the coannihilation cross section. In the same context, a second feature can
be explained. Scenarios with a too large or too small Tt parameter are excluded,
because they feature too much contribution of stop-stop annihilation, or neutralino-
neutralino annihilation, respectively (cf. Fig. 6.2).
In the last row of Fig. 6.3, the cut on the branching ratio of b→ sγ has been applied.
As large, negative values of Tt are disfavoured by this constraint [186], a significant
reduction in this range of the trilinear coupling is visible.
Altogether, the cuts do not directly lead to a preferred range of tan β. However,
small values of tanβ are slightly favoured by the constraint on b→ sγ.

6.3 Selected Example Scenarios

For demonstrating the impact of the one-loop calculation to the various final states,
we have chosen three different scenarios in which different processes dominate the
neutralino-stop coannihilation. An overview is given in Tab. 6.2.
All three scenarios are in good agreement with current constraints on the neutralino
relic density, the Higgs mass and BR(b→ sγ). The chosen scenarios feature a sizeable
trilinear coupling. The first and second generation squarks are heavy in comparison
to the stop, which is in agreement with the current LHC bounds. The mass differ-
ence between the lightest neutralino and the stop lies around 40-55 GeV, which is
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sufficiently small to give rise to dominant contribution of neutralino-stop coannihila-
tion. However, the different scenarios also show significant differences, for example,
regarding the values of Mq̃1,2 , mA and µ, which lead to different dominating subchan-
nels.
The relative contributions of the different final states to each scenario are given
in Tab. 6.3. The relative contribution of all coannihilation processes to the total
(co)annihilation cross section is indicated by Σtotal. With a contribution of 40 −60 %
the importance of neutralino-stop coannihilation is clearly visible. As we study in
Chap. 10 the impact of the one-loop corrections with respect to the Higgs and elec-
troweak vector bosons in the final state, Σφ+V gives the corresponding sum of these
contributions.
In the following, we work out the key features which will be interesting for the dis-
cussion of the loop effects for each scenario. Throughout the thesis especially the
impact of the Higgs final states and the gluon will be covered, as these have been
addressed particularly by the author.

Scenario I. Scenario I shows the highest contribution of neutralino-stop coannihila-
tion with up to almost 60 %. The final state with the lightest Higgs boson dominates
with 38.5% by far. The electroweak vector bosons and the gluon contribute to a much
lesser extent.
To study the scenario further, Fig. 6.4 shows the contribution of the squared dia-
grams and their interference terms to the tree-level cross section for selected pro-
cesses. The grey area indicates the thermal distribution of 〈σv〉 in arbitrary units,
which is convoluted with the corresponding cross section times velocity. For more
details we refer to its derivation in Sec. 4.1.3. It can be taken as a measure for the
relevant range of centre-of-mass momentum within the calculation of the relic den-
sity.
The upper left subfigure shows the contributing matrix elements for the process
χ̃0
1t̃1 → t h of Scenario I. As already discussed above, the Higgs-squark-squark cou-

pling is significantly enhanced due to a high value of Tt, which causes a dominating
contribution of the squared matrix element tt, and leads to a sizeable st interference
term. The ss-matrix element contributes only little. With the neutralino-neutralino-
Higgs coupling being the only one which does not contain a trilinear coupling, the
contribution of the u-channel is completely negligible in comparison to the others,
and thus not shown in Fig. 6.4.

Scenario II. Although in Scenario II the final state with the lightest Higgs boson
shows the highest individual contribution, this scenario is in contrast to the previous
one. In this case, also the electroweak bosons feature a striking impact with 10.7 %
for the Z0-boson and 3.4 % for the W+-boson. The gluon has a sizeable relative
contribution of 9.1 %. The differences are based on a smaller µ parameter and a
higher value for tanβ. Moreover, it has a slightly lower trilinear coupling parameter,
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Figure 6.4: Contribution of the different diagrams (s-, t-, and u-channel) to selected pro-
cesses of the different scenarios. The tree-level cross section as well as the most
relevant contributions of the different squared diagrams (ss, tt, uu) and the
interference terms (st, su, tu) are depicted.
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and a slightly heavier third generation squark and bino mass parameter. The plots
in the middle of Fig. 6.4 show the contributing squared diagrams and interference
terms for the Z0- and W+-boson. In contrast to Scenario I, the tt matrix element
shows only a small impact on the cross section. The dominating channel for the
electroweak vector bosons is the ss-channel. Its contribution is even larger for the
bW+ final state than for t Z0, due to a larger phase space. However, large destructive
interferences of this diagram with the sub-leading t- and u-channels decrease its cross
section such that the total value is almost an order of magnitude smaller than for
the Z-boson. The lower subfigure shows a similar plot for a gluon in the final state.
It features the highest cross section in comparison to the other final states. Due to
the chosen gauge, an unphysical behaviour is observable for the tt element.

Scenario III. Scenario III is interesting especially in comparison to Scenario I.
Both scenarios show a large contribution of the lightest Higgs final state, however,
in Scenario III the heavy Higgs bosons also contributes. This is due to a pseudoscalar
Higgs boson with a light pole mass of mA0 = 386 GeV. With the other heavy Higgs
bosons lying in the same ballpark, processes with heavy Higgs bosons in the final
state are now accessible. Considering the upper right plot of Fig. 6.4, the cross sec-
tion is dominated by the t-channel contribution, which is similar to the process with
the lightest Higgs boson in the final state. The dominance of the tt-matrix element
is even stronger than for the lightest Higgs, such that the ss- and st-contributions
are negligible. This behaviour is caused by the modified mixing in the Higgs sector
due to a smaller mass difference between h0 and H0. Neutralino-stop coannihilation
into electroweak vector bosons is less important in this scenario.

Conclusions. We can conclude that neutralino-stop coannihilation plays an impor-
tant role in the context of achieving the right value for the neutralino relic density,
and obeying the experimental constraints at the same time. Due to its large contribu-
tion to the total (co)annihilation cross section, the impact of the full one-loop O(αs)
supersymmetric QCD corrections is interesting to investigate. This is especially an
important issue in order to match the experimental precision of PLANCK.
In the next three chapters 10, 8, and 9, we will theoretically discuss the performed
one-loop calculation in detail, in order to study the impact of these corrections on
the scenarios which have been just introduced in Chap. 10.
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7 Virtual Corrections

In the following, we focus on the calculation of the full next-to-leading order (NLO)
O(αs) corrections to neutralino-stop coannihilation into all final states. An overview
of the corresponding tree-level diagrams for the process χ̃0

i q̃j → qjX , with X =
h0, H0, A0, H±,W±, Z, γ, g, has been already given in Fig. 6.1.
In order to obtain a full NLO calculation, we have to take into account all virtual
and real contributions which contribute in O(αs). In the following, we focus on the
virtual part, the real contributions will be addressed in a later chapter.
Virtual corrections have the same initial and final state particles as the correspond-
ing tree-level diagrams, but feature additional, internal exchange particles. Thus, it
possesses the same kinematics and phase space as the tree-level processes. We can
distinguish three different kinds of virtual corrections: self-energies (2-point func-
tions), vertex corrections (3-point functions) and box diagrams (4-point functions),
which we will consider in the following.
The corresponding one-loop diagrams for the different studied final states are given
in Figs. 7.7 to 7.10. Considering SUSY-QCD corrections implies that only quarks,
squarks, gluons and gluinos can contribute as additional internal particles in the
loops.

7.1 Regularization and Dimensional Reduction

All loop diagrams have one thing in common. They contain a virtual, unconstrained
momentum q which has to be integrated over the whole phase space (cf. Fig. 7.1).
Due to this, the propagator momentum q can become infinite, and thus, give rise to
a divergence. Although the full calculation will be finite in the end, for the handling
of separate contributions these divergences have to be extracted. One possible ap-
proach is introducing a cut off in order to prevent infinite momenta. However, this
method violates translation and gauge invariance. Therefore, other methods have
been proposed like, for instance, the Pauli-Villars regularization [187] or dimensional
regularization (DReg or DR), see e.g. Ref. [188].

Dimensional Regularization. In the dimensional regularization approach, the di-
vergences are isolated by calculating in D dimensions. The idea behind this method,
becomes clearer in the following simple example. For instance, the divergence of a
simple integral

∫∞
a

1
r2
d3r, which is linearly divergent, can be reduced by lowering

the integration dimension. The integral
∫∞
a

1
r2
d2r is only logarithmic divergent. By
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lowering dimensions further
∫∞
a

1
r2
dr the integral becomes convergent.

If we want to calculate an integral which is divergent in four dimensions, we can
reformulate it in a convergent D-dimensional one, similar to the aforementioned
example. When performing the limes to 4 dimensions, the divergence becomes vis-
ible as pole and makes these integrals manageable. A big advantage is moreover
that dimensional regularization maintains Lorentz invariance, gauge invariance and
unitarity.

p1

p2 − p1

q + pN−1

pN−1q

m0q + p1
m1

q + p2

m2

Figure 7.1: General N -loop diagram. All kinematics can be fixed by external momenta
except one unconstrained momentum q.

Extraction of Ultraviolet and Infrared Divergences. Based on a simple example
we point out the strategy of dimensional regularization and demonstrate the extrac-
tion of infrared and ultraviolet poles.
In 4 dimensions the integral

∫
d4q

1

(q2)α
, (7.1)

which could arise due to a massless virtual particle in the propagator, is for all
ranges of α divergent. Divergences which arise when 4 ≥ 2α are called ultraviolet
(UV) divergent, poles which occur with 4 ≤ 2α are known as infrared (IR) divergent.
To extract the poles, we reformulate this integral in D dimensions. Further, we can
perform a Wick-rotation and reformulate the integral in Euclidean coordinates

∫
dDq

1

(q2)α
= i(−1)αΩD

∫ ∞

0

dq2E
1

2
(q2E)

D
2
−1−α (7.2)
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with ΩD = π
D
2 /Γ(D

2
) being the solid angle. This integral is infrared divergent for

D < 2α and ultraviolet divergent for D > 2α. Thus, we split now the integral in
two parts, the infrared part with q2E < Λ2 and the ultraviolet with q2E > Λ2

∫
dDq

1

(q2)α
= i(−1)α

π
D
2

Γ(D
2

)

(∫ Λ2

0

dq2E
1

2
(q2E)

D
2
−1−α +

∫ ∞

Λ2

dq2E
1

2
(q2E)

D
2
−1−α

)
. (7.3)

In order to distinguish between the two kinds of divergences, we introduce a variable
D′ > 2α for the infrared divergent integral and a second variable D < 2α for the
ultraviolet divergent one. Thus we obtain the following expression

∫
dDq

1

(q2)α
= i(−1)α

2π
D
2

Γ(D
2

)

(
ΛD′−2α

D′ − 2α
− ΛD−2α

D − 2α

)
. (7.4)

If we set α = 2, we arrive at the loop integral of the lowest order which features
infrared and ultraviolet divergences. This integral, which we will be later able to
identify with B(0,0,0), arises in our calculation for example in the gluon self energy
with an internal gluon (see Fig.8.3). In this specific case, we obtain the following
expression

∫
dD

1

(q2)2
= i

2π
D
2

Γ(D
2

)

(
ΛD′−4

D′ − 4
− ΛD−4

D − 4

)
= i

π2−ε

Γ(2 − ε)

(
Λ−2εUV

εUV
− Λ−2εIR

εIR

)
, (7.5)

where we can easily see that we can nicely separate the infrared and ultraviolet
divergences. In the limit of D,D′ → 4 we see how the poles arise, which nicely
behave in D dimensions. In the last step, we have set

ε =
4 −D

2
. (7.6)

In our calculation we clearly distinguish between infrared 1
εIR

and ultraviolet 1
εUV

divergences. Especially for cross-checks in the final implementation of our DM@NLO

code, keeping the distinction between both kinds of divergences, enables us to per-
form powerful cross-checks. However, one could also treat them undistinguishable
and set both to 1

ε
. In this case, the example integral of Eq. (7.5) converges to zero.

Working in D dimensions requires also to consistently adapt four-vectors to D-
vectors and continuing the metric tensor so that e.g. gµµ = D. Thus, the relation
for the Dirac matrices reads now γµγµ = D, whereas the anticommutator relation
{γµγν} = 2gµν1 remains unchanged even in D dimensions.

Dimensional Reduction (DRed). Although dimensional regularization is a well
established method to extract poles in Standard Model calculations, it poses a
problem for loop calculations within Supersymmetry. This was explicitly shown in
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Ref. [189, 190]. In D dimensions, vector fields would be now also D-dimensional
with correspondingly adjusted degrees of freedom. Thus, a common superfield with
its fermionic superpartner would not be possible anymore. This means, that Super-
symmetry is not preserved within dimensional regularization.
Therefore, another kind of regularization scheme was introduced by Ref. [190], the
so-called dimensional reduction (DRed). Within this scheme, the divergent integrals
are treated similarly to DReg by calculating them in D dimensions. However, all
tensors connected to vector fields are kept in 4 dimensions within the calculation.
At one-loop level, differences between both schemes only appear as additional finite
parts in DReg in comparison to DRed.
As we calculate SUSY-QCD loop corrections, we use in the following the dimensional
reduction scheme.

7.2 Introduction to Loop Integrals

The occurring integrals within a one-loop calculation are well known for a long time,
see for example Refs. [191, 192]. All N-loop diagrams of Fig. 7.1 can be reduced to
the form of

In(Υ) =

∫
dDq

1

(q2 − Υ + iǫ)n
, (7.7)

where Υ is a function of masses and external momenta. This integral can be solved
in D dimensions after performing a Wick-rotation and changing to Euclidean coor-
dinates. Thus, we obtain the following expression

In(Υ) = i(−1)nπD/2Γ(n−D/2)

Γ(n)
(Υ − iǫ)D/2−n. (7.8)

We clearly see that the term Γ(n−D/2)
Γ(n)

causes the divergences in the the loop integrals.

Example of Loop Integral Formalism: A0(m2). To quote an example, we have a
look at the easiest case of a loop integral, the scalar loop integral A0. This is defined
to be the integral In(Υ) with n = 1:

A0(m
2) =

(2πµ)4−D

iπ2

∫
dDq

1

q2 −m2 + iǫ
. (7.9)

Here, the prefactor is set by convention. The variable µ, which has the dimension of
a mass, retains the correct dimension of the D-dimensional integral as it would have
in four dimensions. We will later identify this variable as renormalization scale.
Without the need of performing any Feynman parametrization for this simple ex-
ample, we immediately see that we can identify the integral A0(m

2) with the above

88



7 Virtual Corrections

p

m

p

Figure 7.2: Generic A0(m
2) loop integral.

introduced integral I1(Υ) by setting Υ = m2

A0(m
2) =

(2πµ)4−D

iπ2
I1(m

2) (7.10)

such that we obtain by using Eq. (7.8)

A0(m
2) = −

(
4πµ2

) 4−D
2 Γ(

2 −D

2
)(m2 − iǫ)D/2−1 (7.11)

= −(m2 − iǫ)

(
m2 − iǫ

4πµ2

)−ε

Γ(ε− 1), (7.12)

where in the last step D = 4 − 2ε was used. We can perform a Taylor series for the
ε-dependent terms

(
m2 − iǫ

4πµ2

)−ε

= 1 − ε ln

(
m2 − iǫ

4πµ2

)
+ O(ε2) (7.13)

Γ(ε− 1) = −1

ε
− Γ(1) − Γ′(1) + O(ε) (7.14)

= −1

ε
− 1 + γE + O(ε),

with using the definition of the Euler-Mascheroni constant γE = −Γ′(1). Thus, we
finally arrive at

A0(m
2) = m2

(
1

εUV

− γE + ln 4π − ln

(
m2 − iǫ

µ2

)
+ 1 + O(ε)

)
, (7.15)

where we could extract an ultraviolet divergence 1
εUV

. It is common to introduce an
abbreviation for the term

∆UV =

(
1

εUV
− γE + ln 4π

)
. (7.16)

The reason for that will become clearer in Chap. 8.1.
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Example of Loop Integral Formalism: B0(p2

1
,m2

0
,m2

1
). Similarly, we can treat

the scalar integral B0.

B0(p
2
1, m

2
0, m

2
1) =

(2πµ)4−D

iπ2

∫
dDq

1

[q2 −m2
0 + iǫ][(q + p1)2 −m2

1 + iǫ]
, (7.17)

It arises from a 2-point function of a generic self energy diagram like in Fig. 7.3.
However, in order to obtain an integral of the form Eq. (7.7), we have to identify
the argument Υ. Thus, we use the Feynman parametrization

1

ab
=

∫ 1

0

dx
a

[a(1 − x) + bx]2
(7.18)

and can rewrite Eq. (7.17) as

B0(p
2
1, m

2
0, m

2
1) =

(2πµ)4−D

iπ2

∫ 1

0

dx

∫
dDq

1

[(q + xp1)2 − x2p21 + x(p21 −m2
1 +m2

0) −m2
0 + iǫ]2

.

(7.19)

Substituting q′ ≡ q + xp1 and dq′ ≡ dq, we can reformulate B0(p
2
1, m

2
0, m

2
1) in terms

of the integral In(Υ) as

B0(p
2
1, m

2
0, m

2
1) =

(2πµ)4−D

iπ2

∫ 1

0

dx I2(Υ), (7.20)

where Υ(x) = x2p21 − x(p21 −m2
1 +m2

0) +m2
0. This brings us to

B0(p
2
1, m

2
0, m

2
1) =

1

εUV

− γE + ln 4π −
∫ 1

0

dx ln

(
x2p21 − x(p21 −m2

1 +m2
0) +m2

0 − iǫ

µ2

)
,

(7.21)

where we made use of Eq. (7.8).
Finally, we managed to isolate the ultraviolet divergence of the scalar 2-point func-
tion, which is a general feature independent of all arguments. At this point, it be-
comes clear, why a careful treatment of specific argument sets is important. The
remaining integral can be performed further, however, for specific configurations of
p21, m

2
1 and m2

2, the argument of the logarithm can become negative, and thus leads
to complex values of the logarithm. Also, as already seen in the previous section,
the specific loop function B(0, 0, 0) = 1

ǫUV
− 1

ǫIR
features also an infrared divergence.

Therefore, it is advised to perform this integral, and in general all loop integrals, for
the specific argument sets separately. However, this has been done already exten-
sively in the literature.
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p1

p1 + q

m1

q

p1m0

Figure 7.3: Generic B0(p
2
1,m

2
0,m

2
1) loop integral.

Tensor Reduction. We have shown the derivation of two loop integrals A0(m
2)

and B0(p
2
1, m

2
0, m

2
1). However, when performing a one-loop calculation we also need

loop integrals arising from 3-point and 4-point-functions. Continuing the naming
convention they are defined as C0(p

2
1, (p1 − p2)

2, p22, m
2
0, m

2
1, m

2
2) and D0(p

2
1, (p2 −

p1)
2, (p3 − p2)

2, p23, p
2
2, (p1 − p3)

2, m2
0, m

2
1, m

2
2, m

2
3), respectively.

However, so far, we have only considered scalar particles within the loop. But we

can also imagine having a fermionic propagator
i(/q+m)

q2−m2 in the loop of Fig. 7.1. Thus

we get a tensor structure for the loop integrals like [193]

TN
µ1,...,µM

(p1, ..., pN−1;m0, ..., mN−1) =
(2πµ)4−D

iπ2

∫
dDq

qµ1
...qµM

D0D1...DN−1

(7.22)

with

D0 = q2 −m2
0 + iǫ, Di = (q + pi)

2 −mi + iǫ, i = 1, ..., N − 1, (7.23)

with T 1 = A, T 2 = B, T 3 = C, and T 4 = D, etc.
Passarino and Veltman developed for a way to treat these tensor integrals efficiently
[192]. With the help of the so-called Passarino-Veltman reduction these integrals can
be reduced in their tensorial rank and decomposed down to pure scalar integrals. Let
us have a quick look at one quite frequently used tensor loop function. For instance,
the tensor 2-point functions are given by

Bµ = pµ1B1 (7.24)

Bµν = gµνB00 + pµ1p
ν
1B11. (7.25)

When multiplying both sides of Eq. 7.24 with the external momentum p1 we arrive
at

pµ1Bµ =
(2πµ)4−D

iπ2

∫
dDq

p1.q

[q2 −m2
0 + iǫ][(q + p1)2 −m2

1 + iǫ]
= p21B1. (7.26)
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Now, we can use a trick, and expand the product p1.q in terms of the denominator’s
factors

p1.q =
1

2

(
[(q + p1)

2 −m2
i + iǫ] − [q2 −m2

0 + iǫ] − [p21 −m2
i +m2

0]
)
. (7.27)

Combining Eqs. (7.26) and (7.27) we can rewrite the tensor 2-point function in
terms of pure scalar loop function A0 and B0:

p21B1 =
(2πµ)4−D

iπ2

1

2

(∫
dDq

1

q2 −m2
0 + iǫ

(7.28)

−
∫
dDq

1

(q + p1)2 −m2
1 + iǫ

− (p21 −m2
1 +m2

0)

∫
dDq

1

[q2 −m2
0 + iǫ][(q + p1)2 −m2

1 + iǫ]

)

=
1

2

[
A0(m

2
0) − A0(m

2
1) − (p21 −m2

1 +m2
0)B0(p

2
1, m

2
0, m

2
1)
]

⇒ B1 =
1

2 p21

[
A0(m

2
0) − A0(m

2
1) − (p21 −m2

1 +m2
0)B0(p

2
1, m

2
0, m

2
1)
]

(7.29)

Similar is possible for the coefficients B00 and B11 of Eq. (7.25). We obtain

B00 = 1
2(D−1)

[A0(m
2
1) + 2m2

0B0(p
2
1, m

2
0, m

2
1)

+(p21 −m2
1 +m2

0)B1(p
2
1, m

2
0, m

2
1)] (7.30)

B11 = 1
2(D−1)p21

[(D − 2)A0(m
2
1) − 2m2

0B0(p
2
1, m

2
0, m

2
1)

−D (p21 −m2
1 +m2

0)B1(p
2
1, m

2
0, m

2
1)] (7.31)

This method can be applied similarly to all loop integrals of all ranks. Thus, we
are able to reduce the occurring loop integrals to few commonly used ones. Their
analytic expressions with their divergence structure is well known and can be found
in different literature [191–194].

Summary of Frequently Used Divergent Loop Integrals. As discussed before
the calculation of loop functions give rise to ultraviolet and infrared divergences. As
we could see on the example of the loop integral B0, different argument sets can give
rise to different divergent behaviour. Therefore, we give in the following an overview
of the most frequently used divergent loop integrals in this calculation, in order to
obtain a feeling for their divergence structure.
These loop integrals will be later set in the context of the cancellation of the vir-
tual and real contributions (see Figs. 9.5, 9.6, 9.7 and 9.9). For further interest on
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loop integral 1/ǫUV 1/ǫIR 1/ǫ2IR

A0(m
2) X - -

B0(p
2
1, m

2
0, m

2
1) X - -

B0(0, 0, 0) X X -
B1(p

2
1, m

2
0, m

2
1) X - -

B00(p
2
1, m

2
0, m

2
1) X - -

B11(p
2
1, m

2
0, m

2
1) X - -

Ḃ0(m
2, m2, 0) - X -

Ḃ1(m
2, m2, 0) - X -

Ḃ00(p
2
1, m

2
0, m

2
1) X - -

C0(m
2
1, s,m

2
2, 0, m

2
1, m

2
2) - X -

C0(m
2, s, 0, 0, m2, 0) - - X

C00(p
2
1, (p1 − p2)

2, p22, m
2
0, m

2
1, m

2
2) X - -

D0(m
2
2, m

2
1, 0, m

2
3, s, u, 0, m

2
2, m

2, m2
3) - X -

D0(m
2
3, m

2
1, m

2
2, 0, t, s, 0, m

2
1, m

2
2, 0) - - X

Table 7.1: Loop integrals with their leading divergence.

the divergent structure of different loop integrals, we refer the interested reader to
Refs. [195–197].

7.3 Calculation of Virtual Corrections

For the calculation of the full one-loop SUSY-QCD corrections, we have to take
different contributions into account. As we consider only corrections up to O(αs),
the occurring contributions are vertex corrections ∆vert

1,2 , propagator corrections ∆prop,
and box contributions ∆box. A schematic picture is shown in Fig. 7.4. Altogether
they contribute to the full virtual corrections

∆corr
virtual = ∆vert

1 + ∆prop + ∆vert
2 + ∆box (7.32)

These corrections have to be calculated for all channels and final states depicted in
Fig. 6.1.
In order to provide a powerful tool for the full SUSY-QCD one-loop calculation, we
have chosen a generic and extendible structure for calculating the matrix elements
of the propagator corrections, vertex corrections, boxes and counterterms for all
final states. Due to the different structure in their calculation, we have divided the
calculation into three parts: the Higgs boson final states, the electroweak vector
boson final states and the gluon final state. As the author of this thesis has been in
charge of the Higgs boson final states, and performed most of the parts for the gluon
final state, this work focuses mainly on these five of the total eight processes. In the
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∆vert
1 + ∆prop + ∆vert

2 + ∆box

Figure 7.4: Contributions to the O(αs) corrections, consisting of vertex corrections ∆vert
1,2 ,

propagator corrections ∆prop and box contribution ∆box.

following we want to demonstrate our calculation in particular on the example of
the Higgs final states.

7.3.1 Processes with a Higgs Boson in the Final State

The four different Higgs boson final states can be treated in a common way. With a
clever choice, we can construct generic amplitudes, which can be used for the tree-
level calculation, as well as for the vertex corrections and propagator corrections.
As the contributions arising from counterterms will be discussed in more detail in
a later section, we only want to mention that also all matrix elements containing
counterterms can be calculated based on this structure.
As an example we want to have a closer look at the corrections arising from a fermion

p1

p+ q

q

pm

g0 g1

Figure 7.5: Derivation of the generic loop correction structure.

propagator, which is shown in Fig. 7.5. Assuming a general left/right structure for
the couplings g0 and g1, we can calculate the corrections (with neglecting the external
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legs so far) as follows

µ4−D

(2π)D

∫
dqDi[g0L PL + g0R PR]T aγµi

(/q + /q1) +m

(q + q1)2 −m2
i[g1L PL + g1R PR]T aγµi

−gµν
q2

= −CF
µ4−D

(2π)D

∫
dqD

[g0Lg1L PL + g0R g1L PR](2 −D)(/q + /q1)

[q2][(q + q1)2 −m2]

− CF
µ4−D

(2π)D

∫
dqD

[g0L g1R PL + g0R g1R PR]Dm

[q2][(q + q1)2 −m2]

= − CF

16π2

{
4m[g0Lg1L PL + g0R g1L PR]B0(q

2
1, 0, m

2)

−2[g0Lg1L PL + g0R g1L PR]
(
B0(q

2
1, 0, m

2) +B1(q
2
1, 0, m

2)
)
/q1

}
(7.33)

Comparing with the last two lines of Eq. (7.33), we obtain a generic structure ac-
cording to

i[(Zs
LPL + Zs

RPR) + (Zv
LPL + Zv

RPR) /q1], (7.34)

with q1 being the propagator momentum. Furthermore, the parameters Zs
L and Zs

R

account for the left and right chiral scalar coefficient, respectively. The left and right
handed vectorial form factors are denoted by Zv

L and Zv
R. This structure is typical

for all propagator and vertex corrections which include a fermion line, as well as for
corresponding box diagrams. Based on this structure we can construct the necessary
matrix elements.

s-channel contribution. In the s-channel diagram all vertex corrections and prop-
agator corrections contain fermionic contributions, see Fig. 7.6. Thus, we can use the
above derived general expression for all arising corrections such that the amplitude
Ms shows the most general structure

Ms = ū(p3) i [(F s
LPL + F s

RPR) + (F v
LPL + F v

RPR) /q1] (7.35)

i
(/q1 +mq1)

q21 −m2
q1

i [(Zs
LPL + Zs

RPR) + (Zv
LPL + Zv

RPR) /q1] i
(/q1 +mq1)

q21 −m2
q1

i [(As
1L PL + As

1R PR) + (Av
1L PL + Av

1R PR) /q1] u(p1).

The form factors As,v
1L,R are introduced to model the corrections ∆vert

1 arising from

the coupling Â
qg
in. The contributing loop diagrams are depicted in Fig. 7.7(c). Simi-

larly, the form factors F s,v
L,R result from the coupling F̂

qg
φ and lead to the corrections

∆vert
2 (cf. Fig. 7.4). Their contributing vertex corrections are shown in Fig. 7.8(a).

The fermionic propagator which is contained in the s-channel diagram, leads to
the above derived form factors Zs,v

L,R. The two corresponding loop diagrams, which
contribute to the propagator correction ∆prop are depicted in Fig. 7.7(a). All corre-
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qg

q1 mq1

q̃g,i p2

χ̃0
n p1

p4 φ

p3 q′

Â
qg
in F̂

qg
φ q̃g,j q2 mq2

q̃g,i p2

χ̃0
n p1

p4 φ

p3 q′

Ĝ
qg
φ,ij

Â
qg
jn

χ̃0
k, χ̃

±
k

q3 mq3

q̃g,i p2

χ̃0
n p1

p3 q′

p4 φ

Â
qg
ik

Ĥφ
nk

Figure 7.6: Definitions which have been used for the generic amplitudes with a Higgs boson
in the final state (Φ = h0,H0, A0,H±). S-, t- and u-channel are depicted.
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sponding analytical expressions can be found in Appendix A–D.
However, we also want to recover the tree-level expression with this generic structure.

In contrast to the tree-level expression, two propagator terms
(/q1+mq1 )

q21−m2
q1

enter the am-

plitude due to the loop corrected fermion propagator (cf. Eq. (7.35)). Therefore we
have to perform a little trick in order to obtain the tree-level expression. Contracting
the two fermionic propagators and the terms arising from the loop corrections to
the propagator, we obtain

Ms = ū(p3) i [(F s
LPL + F s

RPR) + (F v
LPL + F v

RPR) /q1]
1

q21−m2
q1

i [(P s
LPL + P s

RPR) + (P v
LPL + P v

RPR) /q1] (7.36)

i [(As
1LPL + As

1RPR) + (Av
1LPL + Av

1RPR) /q1] u(p1),

where the newly introduced form factors P s,v
L,R are connected to Zs,v

L,R as follows

P s
L = −

[
Zs

Lm
2
q1

+ Zs
R q

2
1 + (Zv

L + Zv
R)mq1 q

2
1

]
/(q21 −m2

q1
) (7.37)

P s
R = −

[
Zs

L q
2
1 + Zs

Rm
2
q1 + (Zv

L + Zv
R)mq1 q

2
1

]
/(q21 −m2

q1) (7.38)

P v
L = −

[
(Zs

L + Zs
R)mq1 + Zv

Lm
2
q1

+ Zv
R q

2
1

]
/(q21 −m2

q1
) (7.39)

P v
R = −

[
(Zs

L + Zs
R)mq1 + Zv

L q
2
1 + Zv

Rm
2
q1

]
/(q21 −m2

q1
). (7.40)

Hereby, the coefficients Zs,v
L,R are again those which directly arise from the quark self

energies, the momentum q1 describes the propagator momentum and mq1 the corre-
sponding fermion mass. It is clearly visible, that we have absorbed the additional
propagator denominator and the two additional complex i, which arise in contrast
to the tree-level expressions.
Altogether, we can now use the above introduced expression (7.36) for all necessary
corrections (and counterterms) as well as for recovering the tree level.
The tree level is obtained by setting all vectorial form factors to zero (Av

1L,R =
F v
L,R = 0). For the scalar form factors, we can put in the usual tree-level couplings

(As
1L,R = A

qg L,R
ij , and F s

L,R = F
qg L,R
Φ ). They can be found in more detail in Ap-

pendix A. To reduce the propagator expression of Eq. 7.36 to the tree level, we have
to put P v

L = P v
R = 1 and P s

L = P s
R = mq1 , where mq1 is the corresponding propagator

mass.
If we want to account for the loop corrected version of the generic amplitude, we
keep all form factors the same as for the tree-level case, except setting one of the
vertices or the propagator to their loop corrected values in order to obtain ∆vert

1 ,
∆vert

2 , or ∆prop. The necessary form factors and couplings can be found in detail in
Appendix A–D.
Of course, for calculating the whole squared matrix element, also the complex con-
jugated amplitude has to be considered. Addressing a one-loop calculation of O(αs),
we have to consider all relevant interferences between the one-loop correction dia-
grams and their corresponding tree-level channels for each final state. Products of
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loop-diagrams with themselves do not have to be considered, as these contributions
are already beyond next-to-leading order level.
Therefore, it is sufficient to use a pure tree-level structure for the complex conjugated
case

M†
s = −ū(p1) i [(A∗

1RPL + A∗
1LPR)] i

/q1 +m

q21 −m2
q1

i [(F ∗
RPL + F ∗

LPR)] u(p3) . (7.41)

Hereby, it is not needed to distinguish between scalar and vectorial form factors. The
basic naming convention is again similar to Eq. (7.35), and we can set the coefficients

to the complex conjugated tree-level couplings A∗
1L,R = A

qg L,R
ij

∗
and F ∗

L,R = F
qg L,R
Φ .

t-channel contribution. A similar generic structure can be derived for the t-
channel of Fig. 7.6 and is given by

Mt =ū(p3) i [(As
2L PL + As

2R PR) + (Av
2L PL + Av

2R PR) /q2] (7.42)

× i

q22 −m2
q2

i Ps
i

q22 −m2
q2

i G u(p1). (7.43)

With the coupling Ĝ
qg
φ,ij and the t-channel propagator being scalar, the structure

is much more simplified than in the s-channel case, as only scalar corrections are
expected for those. In order to be able to easily recover the tree-level structure we
make again use of a small trick, such that we arrive at

Mt =ū(p3) i [(As
2L PL + As

2R PR) + (Av
2L PL + Av

2R PR) /q2]
i P 2

q22 −m2
q2

i G u(p1),

(7.44)

with the following expression accounting for the propagator correction

P = −Ps/(q
2
2 −m2

q2). (7.45)

By setting P = 1 and G = G
qg
Φ, ij we retain the tree-level expression. The loop

contributions arising from the propagator are obtained by putting in the propaga-
tor corrections Ps (cp. Appendix C) of the squark self energy which are depicted
in Fig. 7.7(b). The diagrams contributing to the radiative corrections of G

qg
Φ, ij are

depicted in Fig. 7.8(b), the corresponding form factors G are given in Appendix D.
The loop corrections to the coupling Â

qg
jn are similar for all three channels, and are

shown in Fig. 7.7(c).
Also in this case, we can assume for the complex conjugated amplitude a pure tree-
level structure, which is given by

M†
t = −ū(p1) i G

∗ i

q22 −m2
q2

i [(A∗
2RPL + A∗

2LPR)] u(p3). (7.46)
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u-channel contribution. The last generic amplitude concerns the u-channel, which
features the simplest generic structure:

Mu =ū(p3) i [(As
3L PL + As

3R PR) + (Av
3L PL + Av

3R PR) /q3]

× i
(/q3 +mq3)

q23 −m2
q3

i [Hs
LPL +Hs

RPR] u(p1). (7.47)

With a neutralino or a chargino in the propagator, no propagator corrections
arise, due to taking into account only SUSY-QCD corrections. Also the neutralino-
neutralino-Higgs, and the neutralino-chargino-charged Higgs coupling, respectively,
give no rise to SUSY-QCD corrections. Therefore, we have to address only correc-
tions arising from the vertex Â

qg
i,k.

For the corresponding complex conjugated amplitude we can write

M†
u =ū(p1) i [H∗

LPL + H∗
RPR] i

(/q3 +mq3)

q23 −m2
q3

i [(A∗
3RPL + A∗

3LPR)] u(p3). (7.48)

Again, no generic correction structure has to be taken into account.

Full matrix element. Bringing all expressions described above together, we arrive
at the full matrix element for the tree level

|M|2tree = Mtree
s Mtree∗

s + Mtree
t Mtree∗

t + Mtree
u Mtree∗

u

+ 2Re(Mtree
s Mtree∗

t ) + 2Re(Mtree
s Mtree∗

u ) + 2Re(Mtree
t Mtree∗

u ) (7.49)

and the following squared matrix element for the virtual corrections

|M|2virtual = MA1
s Mtree∗

s + 2Re(MA1
s Mtree∗

t ) + 2Re(MA1
s Mtree∗

u )

+ MF
sMtree∗

s + 2Re(MF
sMtree∗

t ) + 2Re(MF
sMtree∗

u )

+ MP
sMtree∗

s + 2Re(MP
sMtree∗

t ) + 2Re(MP
sMtree∗

u )

+ MA2
t Mtree∗

t + 2Re(MA2
t Mtree∗

s ) + 2Re(MA2
t Mtree∗

u ) (7.50)

+ MG
t Mtree∗

t + 2Re(MG
t Mtree∗

s ) + 2Re(MG
t Mtree∗

u )

+ MP
t Mtree∗

t + 2Re(MP
t Mtree∗

s ) + 2Re(MP
t Mtree∗

u )

+ MA3
u Mtree∗

u + 2Re(MA3
u Mtree∗

s ) + 2Re(MA3
u Mtree∗

t ),

where the conjugated elements are always set to the tree-level amplitude and the
unconjugated terms account for all possibilities: tree level, vertex corrections, propa-
gator corrections. The supscripts indicate the corrected amplitude according to the
aforementioned introduced naming convention.

99



7 Virtual Corrections

Thus, we have finally treated almost all virtual contributions

σfull = σtree + σ∆vert

+ σ∆prop

. (7.51)

However, the calculation of the box diagrams σ∆box

has still to be addressed.

Box contributions. The only missing piece of the virtual contributions arise from
the box diagrams, depicted in Fig. 7.8(c). Also the boxes can be written in the same
generic form as described above, such that we end up with the following generic
expression for the box amplitude

Mbox =ū(p3) i [(Bs
L PL +Bs

R PR) + (Bv
L PL +Bv

R PR) /p2] u(p1), (7.52)

where Bs
L,R denote the corresponding scalar form factors of the contributing boxes,

and Bv
L,R indicate the vectorial ones in dependence on the chosen momentum p2.

The full analytic expressions of the form factors are given in Appendix E.
The full squared matrix element for the box contributions reads

|M|2box = MboxM∗
s + MboxM∗

t + MboxM∗
u, (7.53)

where the complex conjugated terms correspond to the above introduced expressions
Eqs. (7.41),(7.46), and (7.48). Thus, we finally have calculated all parts

σfull = σtree + σ∆vert

+ σ∆prop

+ σ∆prop

(7.54)

contributing to the virtual corrections.
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(a) Quark self energies at one-loop level con-
tributing to O(αs). Their corresponding scalar
and vectorial form factors Zs,v

L,R are given in Ap-
pendix C.
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(b) Squark self energies at one-loop level contributing to O(αs). They
give rise to the pure scalar corrections Ps, given in the Appendix C .
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(c) Vertex corrections to the gaugino-squark-
quark coupling Â

qg
in, which contributes to all pro-

cesses and channels. The form factors As,v
L,R are

given in Appendix D.

Figure 7.7: One-loop corrections which are common for all final states. Shown are the
contributions arising from the quark and squark propagator, as well as from
the gaugino-squark-quark coupling.
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(a) Contributing vertex corrections to the Higgs-
quark-quark coupling F̂
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φ , which appears in the

s-channel. The corresponding form factors F s,v
L,R

are given in Appendix D.

h0,H0

A0,H+

qi˜

qj˜ ,

qi˜

qj˜ ,

g
h0,H0

A0,H+

qi˜

qj˜ ,

q

q’

g̃
h0,H0

A0,H+

qi˜

qj˜ ,

qk˜

ql˜ ,

(b) Contributing vertex corrections to the Higgs-squark-squark coupling
Ĝ

qg
φ,ij , which occurs in the t-channel. The pure scalar form factors G are

given in Appendix D.
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(c) All contributing box diagrams for the Higgs final state. Their form factors Bs,v
L,R

are given in Appendix E.

Figure 7.8: Specific virtual corrections in case of a Higgs boson in the final state.
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7.3.2 Processes with a Gluon in the Final State

The process with the gluon in the final state receives the largest number of vertex
corrections and box diagrams (cf. Fig. 7.10). Thus, we do not give all single form
factors in detail as for the Higgs final state. This would exceed by far the scope of
this document. Therefore, we show in the following only the generic structure of the
amplitudes and the contributing diagrams.
In contrast to the Higgs final states, the gluon contributes only via an s-channel
and t-channel diagram. The naming convention which was used for the calculation
is shown in Fig. 7.9.

qg

q1 mq1

q̃g,i p2

χ̃0
n p1

p4 g

p3 q

Â
qg
in B̂ q̃g,i q2 mq2

q̃g,i p2

χ̃0
n p1

p4 g

p3 q

Ĉii

Â
qg
in

Figure 7.9: Definitions which have been used for the generic amplitudes with a gluon in
the final state. The contributing s- and t-channel exchange is depicted.

As the B̂-coupling involves two fermions and one vector boson, it leads to a quite
complex structure for the loop corrected vertex diagrams such that we arrive at

Ms =ū(p3) ǫ
∗
µ(p4)i

[
γµ(Bs

0LPL +Bs
0RPR) + (q1 + p3)

µ(Bs
1LPL +Bs

1RPR)

+(q1 − p3)
µ(Bs

2LPL +Bs
2RPR) +

(
γµ(Bv

0LPL +Bv
0RPR)

+(q1 + p3)
µ(Bv

1LPL +Bv
1RPR) + (q1 + p3)

µ(Bv
2LPL +Bv

2RPR)
)

(/q1 −mq1)
]

× 1

q21 −m2
q1

i [(P s
LPL + P s

RPR) + (P v
LPL + P v

RPR) /q1]

× i [(As
1L PL + As

1R PR) + (Av
1L PL + Av

1R PR) /q1] u(p1) (7.55)

for the generic amplitude of the s-channel diagram. The form factors As,v
1,L,R for

the neutralino-squark-quark coupling and the coefficients P s,v
L,R of the loop corrected

fermionic propagator are the same as in the case of a Higgs boson in the final state.
The only new loop corrected coupling concerns the B̂-coupling. The contributing
loop diagrams, which give rise to the form factors Bs,v

0, L,R, Bs,v
1, L,R, and Bs,v

2, L,R are
depicted in Fig. 7.10(a).

103



7 Virtual Corrections

The complex conjugated matrix element M†
s has to retain only the tree level, and

can be written in the following simpler form

M†
s = −ū(p1) i [(A∗

1RPL + A∗
1LPR)] i

/q1 +m

q21 −m2
q1

i [(B∗
RPL +B∗

LPR)] u(p3) ǫν(p4).(7.56)

The necessary tree-level couplings A∗
1L,R = A

qg L,R
ij

∗
and B∗

L,R = B∗ are given in the
Appendix A.
The correction to the Ĉii-coupling is in contrast to the B̂-coupling not that complex,
because in this case two scalars are involved instead of two fermions. Therefore, the
topology of the form factors reduces to a simple form. The generic structure of the
t-channel can thus be written as

Mt =ū(p3) ǫ
∗
µ(p4)i [(As

2L PL + As
2R PR) + (Av

2L PL + Av
2R PR) /q2]

× i P

q22 −m2
q2

i [C1(p2 + q2)
µ + C2(p2 − q2)

µ] u(p1). (7.57)

Again, the form factors As,v
2,L,R and the propagator correction P are the same as for

the Higgs final state. The contributing diagrams to the Ĉii-coupling are shown in
Fig. 7.10(b).
The complex conjugated amplitude can be written similarly to the Higgs final state

M†
t = −ū(p1) i C

∗ i

q22 −m2
q2

i [A∗
2RPL + A∗

2LPR] u(p3)ǫν(p4), (7.58)

with A∗
2L,R = A

qg L,R
in

∗
and C∗ = C∗

ij.
The squared matrix elements are obtained by multiplying the above introduced
conjugated and unconjugated amplitudes with each other.
The tree-level contribution as given in Eq. (7.49) can be again recovered from the
generic structure. To this end, we set all vectorial form factors arising from couplings
to. The scalar form factors are substituted for As

1L,R = A
qg L,R
ij , and Bs

0L,R = B. The
propagator form factors are set to P v

L = P v
R = 1 and P s

L = P s
R = mq1 in the s-channel.

The tree level in the t-channel is retained by setting As
2L,R = A

qg L,R
in , C1 = Cij and

P = 1, whereas the remaining coefficients are set to zero.
The squared matrix element containing all propagator and vertex corrections to the
gluon final state, is obtained as given in Eq. (7.50) by plugging in the corresponding
form factors. Throughout the whole calculation we used unitary gauge, such that
the polarization sum reads

∑
polarization ǫ

∗
µ(p4)ǫν(p4) = −gµν + xvp

µ
4p

ν
4, with xv = 0

for massless vector bosons and xv = 1/m2
4 for massive vector bosons.

The last remaining piece concerns the box diagrams. In total, seven different boxes
contribute in case of the gluon final state. They are depicted in Fig. 7.10(c). Because
of the vector boson in the final state we arrive at a complex structure for the box
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diagrams

Mbox =ū(p3) ǫ
∗
µ(p4)i [γµ(B′s

0L +B′v
0L /p2)PL + γµ(B′s

0R +B′v
0R /p2)PR

+ p1
µ(B′s

1L +B′v
1L /p2)PL + p1

µ(B′s
1R +B′v

1R /p2)PR

+ p2
µ(B′s

2L +B′v
2L /p2)PL + p2

µ(B′s
2R +B′v

2R /p2)PR

+ p3
µ(B′s

3L +B′v
3L /p2)PL + p3

µ(B′s
3R +B′v

3R /p2)PR u(p1), (7.59)

where we formulate everything in dependence on the momentum p2, similar to the
Higgs case. The whole squared matrix element is obtained according to Eq. (7.53).
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(a) Contributing vertex corrections to the gluon-quark-quark coupling B̂, which appears in the
s-channel. They give rise to the corresponding form factors Bs,v
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(b) Contributing vertex corrections to the gluon-squark-squark coupling Ĉii, which occurs in the
t-channel. The form factors are called C1 and C2.
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(c) All contributing box diagrams for a gluon in the final state, which give rise to the form factors
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Figure 7.10: Specific virtual corrections in case of a gluon in the final state.
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7.3.3 Processes with an Electroweak Vector Boson
in the Final State

Although the processes with the electroweak vector bosons have not been a dedi-
cated part of this thesis, we want to mention them for completeness. Fig. 7.11 shows
the naming convention which has been used for the calculation. In contrast to the
processes with a gluon in the final state, also a u-channel exchange is possible for
the Z0 and W± boson. However, the u-channel is absent for the process involving a
photon.

qg

q1 mq1

q̃g,i p2

χ̃0
n p1

p4 Z0,W±, γ

p3 q′

Â
qg
in B̂q

V
q̃g,j q2 mq2

q̃g,i p2

χ̃0
n p1

p4 Z0,W±, γ

p3 q′

Ĉ
qg
V,ij

Â
qg
jn

χ̃0
k, χ̃

±
k

q3 mq3

q̃g,i p2

χ̃0
n p1

p3 q′

p4 Z0,W±, γ

D̂
qg
V,n,k

Â
qg
i,k

Figure 7.11: Definitions which have been used for the generic amplitudes with an elec-
troweak vector boson in the final state. The contributing s-, t- and u-channel
exchange is depicted. The u-channel exchange is absent in case of a photon
in the final state.

As the generic loop structure for the electroweak vector bosons is the same as for the
gluon in case of the s- and t-channel, we do not quote it again. The expressions can
be taken over from Eqs. (7.55) to (7.58) of the previous section. The corresponding
loop diagrams which give rise to the form factors are depicted in Fig. 7.12(a) and
7.12(b).
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The additional amplitude of the u-channel can be be written as follows

Mu =ū(p3) ǫ
∗
µ(p4)i [(As

3L PL + As
3R PR) + (Av

3L PL + Av
3R PR) /q3]

× i
(/q3 +mq3)

q23 −m2
q3

i [Ds
LPL +Ds

RPR] u(p1). (7.60)

With a neutralino and a chargino, respectively, in the u-channel propagator, no
SUSY-QCD propagator corrections arise. Also the neutralino-neutralino-Z0 boson
and neutralino-chargino-W±-boson coupling, do not lead to radiative corrections.
Therefore, only corrections to the vertex Â

qg
i,k have to be taken into account.

The corresponding complex conjugated amplitude can be written as

M†
u =ū(p1) i [D∗

LPL +D∗
RPR] i

(/q3 +mq3)

q23 −m2
q3

i [(A∗
3RPL + A∗

3LPR)] u(p3)ǫν(p4). (7.61)

Following the same principle as explained for the corrections to the processes in-
volving a Higgs boson or a gluon, we can recover the tree level and calculate all
propagator and vertex corrected matrix elements on the basis of this conventions.
All occurring box diagrams are depicted in Fig. 7.12(c). With the same underlying
topology they can be calculated by the generic structure of Eq. (7.59).

Conclusions. Altogether, we have finally obtained all virtual corrections including
propagator corrections, vertex corrections and boxes. All permutations of generic
amplitudes have been obtained by using FORM [198]. The form factors have been
calculated and checked by using tools like FeynCalc [199] and FormCalc [200]. In-
dependent cross checks ensure the viability of the implemented expressions in the
code. The tree-level expressions have been additionally cross checked by comparing
with the build-in CalcHEP version of micrOMEGAs [201].
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(c) Box diagrams in case of a Z boson, W± boson or photon in the final state.

Figure 7.12: Virtual corrections in case of an electroweak vector boson in the final state.
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8 Renormalization

By working in D dimensions we have achieved to regularize all divergences in the one-
loop corrections. However, for the final total cross section, we expect a finite result
in the end. In order to give a physical meaning to the regularized loop contributions,
renormalization is used, which absorbs the divergences into fields and parameters of
the Lagrangian.

8.1 Principle of Renormalization

A common method is the multiplicative renormalization method, which is also used
in this work. Basic introduction to renormalization can be found in Refs. [202, 203],
further details are given in Refs. [204, 205]. As an introductory example we look at
the scalar φ4-theory

Lbare =
1

2
∂µφ0∂µφ0 −

m2
0

2
φ2
0 −

λ0
4!
φ4
0. (8.1)

In four dimensions the scalar field carries the mass dimension [φ0] = 1 and the quartic
coupling [λ0] = 0. Due to dimensional regularization we assume a D-dimensional
Lagrangian such that the scalar field has dimension [φ0] = D−2

2
. Thus, the coupling

would now also be dependent on the dimension D with [λ0] = 4−D
2

. In order to retain
a dimensionless coupling, the parameter µ is introduced

λ0 → λ0µ
4−D

2 . (8.2)

This parameter is the so-called renormalization scale and was already introduced to
retain the mass dimension of the loop integrals (cf. Eq. (7.9)).
Applying now multiplicative renormalization, we can absorb by rescaling the diver-
gences which occurred in the calculation of the loop integrals in renormalization
constants. These renormalization constants are used to rescale all bare fields, cou-
plings and masses in the Lagrangian. For our example of Eq. (8.1), we can define

φ0 =
√
Zφ φ (8.3)

λ0 = Zλ λ (8.4)

m2
0 = Zmm

2, (8.5)
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=
i

p2 −m2 + iǫ
= i[(p2 −m2)δZφ −m2δZm]

= −iλ = −i(δZλ + 2δZφ)

Figure 8.1: Overview of the Feynman rules for the φ4-theory. On the left side the usual
Feynman rules, on the right side the corresponding counterterm Feynman rules.

where Zi are the multiplicative renormalization factors. In perturbation theory we
can write

φ0 = (1 +
1

2
δZφ)φ (8.6)

λ0 = (1 +
1

2
δZλ) λ (8.7)

m2
0 = (1 + δZm)m2 ≡= 1 + δm2. (8.8)

Putting this in the bare Lagrangian of Eq. (8.1), we arrive at

Lbare =
1

2
∂µφ∂µφ− m2

2
φ2 − λ

4!
φ4 (8.9)

+
1

2
δZφ∂

µφ∂µφ− (δZm + δZφ)
m2

2
φ2 − (δZλ + 2δZφ)

λ

4!
φ4 + O(δZ2)

= Lren + Lct, (8.10)

where the first three terms belong to the renormalized Lagrangian and the remain-
der to the counterterm Lagrangian which absorbs the divergences. Within a one-loop
calculation, we do not have to consider terms proportional to O(δZ2).
We can see that the counterterm Lagrangian gives rise to similar Feynman rules
like the original Lagrangian. They are depicted in Fig. 8.1. However, the occurring
counterterms are not uniquely defined. Therefore, different approaches for their deter-
mination exist in literature. In the following, we want to mention two conceptionally
different ones: the DR and the on-shell renormalization scheme.

DR Renormalization Scheme. To work out the differences between, the DR

renormalization scheme and the on-shell renormalization scheme, we focus on the
following example: the derivation of the mass counterterm δZm of the above intro-
duced φ4-Lagrangian. To this end, we consider the corrections to the propagator.
Fig. 8.2 shows the different parts contributing to the one-loop corrected propaga-
tor: the leading order propagator, the one-loop correction and the corresponding
counterterm contribution.
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= + +

Figure 8.2: Contributions to the full next-to-leading order propagator: Leading order prop-
agator, one-loop correction and counterterm contribution.

Thus, we arrive at one-loop level at

i

p2 −m2
+

i

p2 −m2

(
−iΣ(p2)

) i

p2 −m2
=

i

p2 −m2

(
1 +

Σ(p2)

p2 −m2

)
(8.11)

with Σ(p2) being the mass correction consisting of the one-loop correction and the
corresponding counterterm:

−iΣ(p2) = −iλ
2

1

16π2
A0(m

2) + i
[
(p2 −m2)δZφ −m2δZm

]
. (8.12)

The scalar self energy is given by the loop function A0. The counterterm we can
read off Eq. (8.10) or take it directly from Fig. 8.1. As the scalar loop integral is
independent of the momentum p, we can set δZφ = 0 without violating generality.
This is a special feature of the φ4 theory.
Considering the definition of A0 in Eq. (7.15) we obtain the following expression

−iΣ(p2) = −iλ
2

m2

16π2

[
1

ε
− γE + ln 4π − ln

(
m2 − iǫ

µ2
+ 1

)]
− im2δZm. (8.13)

In the dimensional reduction scheme the counterterm is defined to subtract only the
pure divergence without any finite terms. Therefore, we can directly read off the DR

mass counterterm from Eq. (8.13). The DR counterterm and the corresponding mass
correction are given by

⇒ δZDR

m = − λ

32π2

1

ε
⇒ Σ(p2) =

λm2

32π2

[
−γE + ln 4π + 1 − ln

(
m2 − iǫ

µ2

)]
.

(8.14)

The DR counterterm, however, does not substract only the pure divergence, but the
whole ∆UV -term as defined in Eq. (7.16). Thus, the counterterm and the correspond-
ing mass correction in the DR scheme can be expressed as

⇒ δZDR

m = − λ

32π2
∆ ⇒ Σ(p2) =

λm2

32π2

[
1 − ln

(
m2 − iǫ

µ2

)]
. (8.15)
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For both kinds of counterterms, we see that the corrected mass is dependent on the
renormalization scale µ. For dimensional regularization, the corresponding scheme
is called MS- or MS renormalization scheme (minimal subtraction).

On-shell Renormalization Scheme. Another approach of renormalization is the
so-called on-shell scheme. Especially for particles, which are directly measurable like
the top quark, this method is often used. The key ansatz is that the renormalized
mass should be the physical mass such that it does not obtain any mass corrections.
To this end, the following two renormalization conditions have to be fulfilled

Re Σ(p2)
∣∣∣
p2=m2

= 0 (8.16)

lim
p2→m2

1

p2 −m2
Σ(p2) = 1. (8.17)

The first condition requires the renormalized mass to be the physical mass, i.e. the
real part of the propagator’s pole. The second condition asks for the residuum to be
one. Performing a Taylor series of the mass correction around the pole mass

Σ(p2) = Σ(p2)
∣∣∣
p2=m2

+
d2

dp2
Σ(p2)

∣∣∣
p2=m2

(p2 −m2) + . . . , (8.18)

and considering the first renormalization condition of Eq. (8.17) we get another
condition

d2

dp2
Σ(p2)

∣∣∣
p2=m2

= 0. (8.19)

However, as our example in the simple φ4-theory is momentum independent, the on-
shell mass counterterm is merely defined by Eq. (8.16) such that the corresponding
on-shell mass counterterm reads

⇒ δZOS
m = − λ

32π2

[
∆ + 1 − ln

(
m2 − iǫ

µ2

)]
⇒ Σ(p2) = 0. (8.20)

Within this renormalization scheme, the renormalized mass corresponds exactly to
the physical mass, and receives no mass corrections. In contrast to the DR scheme,
the mass counterterm contains besides the divergence also finite terms.
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8.2 Choice of Renormalization Scheme

Having the building blocks of renormalization in mind, we can think of a proper
renormalization scheme for our studied processes. As we aim to provide the one-
loop calculation of neutralino-squark coannihilation together with the other possible
(co)annihilation processes as one common package which can be linked to public
dark matter tools, we have to guarantee the viability of the renormalization scheme
over a large region of the MSSM parameter space.
However, it is difficult to define a renormalization scheme for both, the bottom
(s)quark sector and the top (s)quark sector at the same time that behaves well for
the whole parameter space.
As the physical mass of the top quark is directly measurable in experiments and
does not form bound states like the bottom quark, it seems appropriate to use its
physical (on-shell) mass in the calculations and renormalize it in the on-shell scheme.
The bottom quark, however, cannot be measured directly and forms hadrons such
that we treat it in the DR scheme.
Because of having top squarks (and potentially bottom squarks) as external parti-
cles, the on-shell scheme is applied for the squark sector. A careful treatment is in
particular needed for the trilinear coupling of the bottom quark Ab. This issue has
been already discussed in literature, see for instance Refs. [206–209]. Using an on-
shell renormalization scheme for Ab, we end up with the following renormalization
constant δAb

δAb =
1

mb

[
− (Ab − µ∗ tanβ) δmb + . . .

]
. (8.21)

It is obvious that for parameter regions with µ tanβ ≫ Ab, the counterterm re-
ceives a large shift and thus, give rise to large corrections of Ab (see e.g. Ref. [207]).
This results also in huge corrections to the lightest Higgs mass, which was shown
in Ref. [206]. Therefore, we define the counterterms of the trilinear couplings in the
DR scheme. With the Higgs-squark-squark coupling playing an important role in the
coannihilation process with a Higgs boson in the final state, we define the trilinear
couplings further as input parameters.
Altogether, we use a hybrid on-shell/DR renormalization scheme, which is set up in
such a way that it minimizes potential problems with sensitive parameters. Similar
renormalization schemes for the quark and squark sectors of the MSSM were already
discussed and studied in Refs. [207, 210]. Compared to those approaches, however,
our renormalization scheme differs significantly in the treatment of the squark mix-
ing angles θt and θb, which will be discussed later in more detail. But still, our
scheme shares some important features with the RS2 scheme which was introduced
in Ref. [207].
In the following, we discuss in more detail the used hybrid on-shell/DR renormal-
ization scheme with the renormalization and factorization scales set to µ =

√
mt̃1mt̃2 .
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Starting with the quark sector, we discuss then the squark sector to close with the
discussion of the αs counterterm, which occur in the vertex counterterms of the
gluon final state.

8.3 Quark Sector

8.3.1 Wave Function Renormalization Constants and

Mass Counterterms

First, we focus on the renormalization of the quark sector, where we take into account
mixing for the time being. The parameters to be renormalized are the quark fields
and masses. To do so, we consider the bare Lagrangian

L0 = q̄0,jδij(i/∂ −m0,qi)q0,i (8.22)

and can substitute as discussed before, the unrenormalized fields and masses by their
renormalized expressions and their corresponding counterterms

q0,i → (δij +
1

2
δZL

ijPL +
1

2
δZR

ijPR)qj (8.23)

m0,qi → mqi + δmqi, (8.24)

with δZL,R
ij being the quark wave function renormalization constants and δmqi the

quark mass counterterm. The renormalized one-particle irreducible two-point func-
tion of the quark is given by

Γ̂ij = δij(/k −mqi) + Π̂ij(k
2) (8.25)

M = iūi(k)Γ̂ijuj(k), (8.26)

with Π̂ij(k) being the renormalized self-energy and M defining its matrix element.
The physical propagator is obtained by inverting the two-point Green’s function
i(Γ̂ij)

−1. According to the usual fermionic propagator structure the renormalized
self-energy can be written in the following generic form

Π̂ij(k
2) = /kPLΠ̂L

ij(k
2) + /kPRΠ̂R

ij(k
2) + PLΠ̂S,L

ij (k2) + PRΠ̂S,R
ij (k2), (8.27)

where Π̂L,R(k2) and Π̂SL,SR(k2) stand for the vector and the scalar parts of the two-
point Green’s function. Again, the hat on the the self energy contributions marks
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the parameters containing renormalized parameters and their counterterms

Π̂
L/R
ij = Π

L/R
ij +

1

2

(
δZ

L/R
ij + δZ

L/R†
ji

)
(8.28)

Π̂
S,L/R
ij = Π

S,L/R
ij − 1

2

(
mqiδZ

L/R
ij +mqjδZ

R/L†
ji

)
− δijδmqi . (8.29)

The two on-shell conditions read

Re Π̂ij(k
2)uj(k)

∣∣∣
k2=m2

qj

= 0 (8.30)

lim
k2→m2

qi

1

/k
2 −m2

qi

Re Π̂ii(k
2)ui(k) = ui(k). (8.31)

The first condition ensures that the pole mass corresponds to the particle’s physical
mass such that it does not obtain any loop corrections. Thus, it fixes the off-diagonal
elements and the mass counterterm. The second condition, however, fixes the diag-
onal elements and care for a proper normalization by requiring the residuum to be
one.
Applying these conditions on Eq. (8.27) together with considering Eqs. (8.29), we ob-
tain the following expressions for the quark wave function renormalization constants
and the mass counterterm.

δZ
L/R
ij =

2

m2
qi
−m2

qj

Re
{
m2

qj
Π

L/R
ij (m2

qj
) +mqimqjΠ

S,L/R
ij (m2

qj
)

+ mqjΠ
S,R/L
ij +mqiΠ

S,L/R
ij

}
, i 6= j (8.32)

δZ
L/R
ii = Re

{
−Π

L/R
ii (m2

qi
) +

1

2mqi

[
Π

S,L/R
ii (m2

qi
) − Π

S,R/L
ii (m2

qi
)
]

− mqi

∂

∂k2

[
mqi

(
Π

L/R
ii (k2) + Π

R/L
ii (k2)

)
+ Π

S,L/R
ii (k2) + Π

S,R/L
ii (k2)

]} ∣∣∣
k2=m2

qi

(8.33)

δmqi =
1

2
Re
{
mqi

[
ΠL

ii(m
2
qi

) + ΠR
ii(m

2
qi

)
]

+ ΠS,L
ii (m2

qi
) + ΠS,R

ii (m2
qi

)
}

(8.34)

As we consider in our work only third generation quarks, quark mixing does not
have to be considered. Thus, we set i = j and neglect the indices in the following.
For each chirality eigenstate of the quark we obtain one counterterm δZL,R

(
qL
qR

)
→
(

1 + 1
2
δZL 0

0 1 + 1
2
δZR

)(
qL
qR

)
, (8.35)

with δZL,R given by Eq. (8.33) with q = t, b.
As the top quark mass is physically directly measurable and does not form any
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bound states we renormalize it in the on-shell scheme such that the top quark mass
counterterm is according to Eq. (8.34) given by

δmOS

t =
1

2
Re
{
mt

[
ΠL(m2

t ) + ΠR(m2
t )
]

+ ΠSL(m2
t ) + ΠSR(m2

t )
}
. (8.36)

In our calculation we use the physical (on-shell) top quark mass of mt = 173.1 GeV.

8.3.2 Specific Treatment of the Bottom Mass

Due to the aforementioned reasons, in contrast to the top quark mass, we do not
renormalize the bottom quark mass within the on-shell renormalization scheme, but
use the DR scheme. As the bottom quark mass is not directly experimentally accessi-
ble, the mass parameter mb(mb) is extracted in the MS renormalization scheme from
Standard Model analysis of the Υ sum rules (for more details see, e.g. Ref. [211–214]).
In order to obtain the bottom quark mass in the DR renormalization scheme within
the MSSM, some recalculation steps have to be performed. An overview is depicted
in Eq. (8.37).

mMS, SM
b (mb)

SM NNLO−−−−−−→
running

mMS, SM
b (Q)

conversion−−−−−→ mDR, SM
b (Q)

threshold−−−−−−→
corrections

mDR, MSSM
b (Q) (8.37)

Starting with the bottom mass at its own mass scale mb(mb), we use the Standard
Model next-to-next-to-leading order (NNLO) renormalization group running to ob-
tain the bottom quark mass at an arbitrary scale Q [215]. The so obtained mass

mMS, SM
b (Q) can then be recalculated in the DR scheme [215]. As a last step, we then

take account for threshold corrections ∆mb, which the mass receives when going
from the SM to the MSSM.

mDR, MSSM
b (Q) = mDR, SM

b (Q) − ∆mb . (8.38)

Having calculated the DR mass of the bottom quark, we can write its corresponding
counterterm as

δmDR

b = (−2)
αsCF

4π
mDR

b ∆ . (8.39)

8.3.3 Resummed Corrections to the

Higgs-Quark-Quark Yukawa Coupling

A prominent place where quark masses enter our calculation is through the Yukawa
coupling of the Higgs bosons to quarks. Especially, the Yukawa couplings to the bot-
tom quarks were precisely studied through Standard Model decays of Higgs bosons
into massive bottom quarks. QCD and top quark induced corrections to the Yukawa
coupling were calculated up to O(α4

s) [216–218] and can be used in terms of an
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effective Yukawa coupling for each neutral Higgs boson Φ = h0, H0, A0 defined as

[
hMS,QCD,Φb (Q)

]2
=
[
hMS,Φb (Q)

]2[
1 + ∆QCD + ∆Φ

t

]
. (8.40)

The usual MS-Yukawa coupling of a Higgs boson to bottom quarks is denoted by(
hMS,Φb

)
(Q) and is corrected by the QCD corrections ∆QCD and the top quark induced

corrections ∆Φ
t . The QCD corrections ∆QCD are explicitly given by

∆QCD =
αs(Q)

π
CF

17

4
+
α2
s(Q)

π2

[
35.94 − 1.359nf

]

+
α3
s(Q)

π3

[
164.14 − 25.77nf + 0.259n2

f

]
(8.41)

+
α4
s(Q)

π4

[
39.34 − 220.9nf + 9.685n2

f − 0.0205n3
f

]
,

where nf accounts for the number of flavours which are taken into account. The
top-quark induced corrections ∆Φ

t for each Higgs boson Φ read

∆h
t = ch(Q)

[
1.57 − 2

3
log

Q2

m2
t

+
1

9
log2 m

2
b(Q)

Q2

]
, (8.42)

∆H
t = cH(Q)

[
1.57 − 2

3
log

Q2

m2
t

+
1

9
log2 m

2
b(Q)

Q2

]
, (8.43)

∆A
t = cA(Q)

[
23

6
− log

Q2

m2
t

+
1

6
log2 m

2
b(Q)

Q2

]
, (8.44)

with

{
ch(Q), cH(Q), cA(Q)

}
=
α2
s(Q)

π2

{ 1

tanα tanβ
,
tanα

tan β
,

1

tan2 β

}
(8.45)

defining the prefactor of each correction.
So far we have only considered corrections arising within the Standard Model. How-
ever, also in the MSSM the Higgs-bottom quark coupling can receive large corrections
for large tanβ or large Ab even beyond next-to-leading order. As these known effects
can affect our performed analysis, we include also these corrections that can be re-
summed to all orders of perturbation theory in our calculation [219, 220]. With ∆b

being the resummable part we can redefine the already corrected Yukawa coupling
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hMS,QCD,Φb (Q) of Eq. (8.40) by

hMSSM,hb (Q) =
hMS,QCD,hb (Q)

1 + ∆b

[
1 − ∆b

tanα tan β

]
, (8.46)

hMSSM,Hb (Q) =
hMS,QCD,Hb (Q)

1 + ∆b

[
1 + ∆b

tanα

tanβ

]
, (8.47)

hMSSM,Ab (Q) =
hMS,QCD,Ab (Q)

1 + ∆b

[
1 − ∆b

tan2 β

]
. (8.48)

For our calculation we use the above defined resummed Yukawa couplings. However,
as we already provide a full next-leading-order calculation we exclude all QCD and
SUSY-QCD corrections arising from one-loop order, as they are already present in
our calculation.
As already mentioned, MicrOMEGAs takes into account some effective couplings in
the calculation of the (co)annihilation cross sections. The above introduced effective
Higgs-bottom quark couplings of Eqs. 8.46–8.48 are according to Ref. [134] the only
corrected parameters with direct impact on the cross section, which are implemented
within MicrOMEGAs so far. Loop corrected sparticle masses and their corresponding
mixing matrix elements are taken over from a chosen mass spectrum calculator, like
SPheno, Suspect, Isajet or SOFTSUSY.

8.4 Squark Sector

After having discussed the renormalization of the quark sector, we focus now on the
corresponding supersymmetric sector. Similarly to the fermionic case we can derive
the wave function renormalization constants for the squarks. Again, we constrain
ourselves to the third generation, i.e. to stops and sbottoms.

To derive the squark wave function renormalization constants we start from the
scalar bare Lagrangian

L0 = ¯̃q0,jδij(i/∂ −mq̃0,i)q̃0,i (8.49)

and substitute the bare fields and masses by their renormalized parameters and the
corresponding counterterms

q̃0,i → (δij +
1

2
δZij)q̃j (8.50)

mq̃0,i → mq̃i + δmq̃i , (8.51)

with δZij being the squark wave function renormalization constant and δmq̃i denot-
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ing the mass counterterm. Hereby, we work in the mass eigenstate basis indicated
by the indices i, j. Again, we define an one-particle irreducible two-point function
Γ̂ij as

Γ̂ij = δij(k
2 −m2

q̃i
) + Π̂ij(k

2) (8.52)

M = iΓ̂ij (8.53)

with its corresponding matrix element M. The one-loop corrected self energy Π̂ij(k
2)

can be written as

Π̂ij(k
2) = Πij(k

2) +
1

2
(k2 −m2

q̃i
)δZij +

1

2
(k2 −m2

q̃j
)δZ∗

ji − δijδm
2
q̃i
, (8.54)

where Πij(k
2) depicts the renormalized self energy and the remainder the correspond-

ing counterterms. Considering the usual on-shell renormalization conditions

Re Π̂ij(k)
∣∣∣
k2=m2

qj

= 0 (8.55)

lim
k2→m2

qi

1

k2 −mqi

ReΠ̂ii(k) = 1, (8.56)

we obtain the following expression for the squark counterterms

δZij =
2

m2
q̃i
−m2

q̃j

ReΠij(m
2
q̃j

), i 6= j (8.57)

δZii = −Re
∂

∂k2
Πii(k

2)
∣∣∣
k2=m2

q̃i

(8.58)

(δm2
q̃i

)OS = ReΠii(m
2
q̃i

). (8.59)

However, the renormalization of the squark masses and connected parameters is
more complicated than discussed until now, as the gauge eigenstates of the third
generation squarks mix. At tree level the squark masses m2

q̃i
in the mass eigenstate

basis are obtained by diagonalization of the squark mixing matrix

(
m2

q̃1
0

0 m2
q̃2

)
= (8.60)

U q̃

(
M2

Q̃
+ (I3Lq −eq s2W ) cos 2β m 2

Z +m2
q mq

(
Aq − µ (tanβ)−2I3Lq

)

mq

(
Aq − µ (tanβ)−2I3Lq

)
M2

{Ũ , D̃} + eq s
2
W cos 2β m 2

Z +m2
q

)
(U q̃)†,

where eq is the fractional charge of the squark in units of e, sW is the sine of the
weak mixing angle, and I3Lq is the weak isospin of the squark. The squark mixing
matrix is given by U q̃, the soft breaking parameter are M2

Q̃
,M2

Ũ
,M2

D̃
, and the tri-

linear couplings are denoted by At, Ab. Due to the SU(2) symmetry the stop and
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sbottom sector is connected through the common breaking parameter M2
Q̃

such that

it has to be renormalized together.
Considering the relation of Eq. (8.60), we end up with in total eleven free parameters
(M2

Q̃
,M2

Ũ
,M2

D̃
, At, Ab, θt̃, θb̃, m

2
t̃1
, m2

t̃2
, m2

b̃1
, m2

b̃2
), where five of those are completely in-

dependent. In order to fix the renormalization of the squark sector we have to select
five independent input parameters. For this choice it is important that the renormal-
ization scheme is applicable not only for the case of neutralino-stop coannihilation,
but also for all the other annihilation and coannihilation processes which should be
covered by our package DM@NLO.
As neutralino-stop coannihilation is extremely sensitive to the lightest stop mass m2

t̃1
and this mass plays also an important role in the t-channel exchange of neutralino
annihilations (cf. [157]) it is quite obvious that the lightest stop mass is chosen as
input-parameter and is treated on-shell. Furthermore, we treat also m2

b̃1
and m2

b̃2
as

input parameter. By contrast, the heaviest squark mass mt̃2 , which is less prone to
receive large corrections, we treat as dependent parameter.
As already mentioned before, the trilinear couplings At, Ab play a crucial role in the
neutralino-stop coannihilation processes with a Higgs boson in the final state. There-
fore, it is quite natural to treat them also as input parameters. Due to huge shifts,
which can appear when treating the trilinear coupling Ab on-shell (see Eq. (8.21)),
we choose to define both, At and Ab in the DR scheme [206–209]. Another approach
would be to define these parameters in the on-shell scheme, e.g. through the decay
process of a squark into squark and a Higgs boson as done in [210]. This, however,
would require a dedicated treatment of the infrared divergences arising in such a
calculation.
To summarize, we have chosen in our hybrid on-shell-DR renormalization scheme the
following parameters as input parameters

(m2
t̃1

)OS, (m2
b̃1

)OS, (m2
b̃2

)OS, ADR

t , A
DR

b , (8.61)

whereas
m2

t̃2
, θt̃, θb̃,M

2
Q̃
,M2

Ũ
,M2

D̃
(8.62)

are dependent parameters.
As a next step we have to specify the counterterms of the input parameters. The
counterterms for the on-shell masses (m2

t̃1
)OS, (m2

b̃1
)OS, (m2

b̃2
)OS are defined according

to Eq. (8.59) as follows

(δm2
q̃i

)OS = ReΠii(m
2
q̃i

) , with q̃i = t̃1, b̃1, b̃2. (8.63)
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The corresponding DR counterterm of the trilinear couplings can be written as

δADR

q̃ =
1

mq

[
U q̃
11U

q̃
12(δm

2
q̃1

)DR + U q̃
21U

q̃
22(δm

2
q̃2

)DR

+
(
U q̃
21U

q̃
12 + U q̃

11U
q̃
22

)(
m2

q̃1 −m2
q̃2

)
δθDRq̃

−
δmDR

q

mq

(
U q̃
11U

q̃
12m

2
q̃1 + U q̃

21U
q̃
22m

2
q̃2

)
]
, (8.64)

with the necessary DR counterterms of the squark masses and their mixing angles
defined by

(δm2
q̃i

)DR =
αsCF

4π
∆

[
(
(U q̃

i1)
2 − (U q̃

i2)
2
)2
m2

q̃i
−m2

q̃i
+
(
U q̃
21U

q̃
11 − U q̃

22U
q̃
12

)2
m2

q̃j

+ 8mqmg̃ U
q̃
i1U

q̃
i2 − 4m2

g̃ − 4m2
q

]
, (8.65)

δθDRq̃ =
αsCF

4π
∆

1

(m2
q̃1
−m2

q̃2
)

[
(
U q̃
21U

q̃
11 − U q̃

22U
q̃
12

)((
(U q̃

11)
2 − (U q̃

12)
2
)2
m2

q̃1

+
(
(U q̃

21)
2 − (U q̃

22)
2
)2
m2

q̃2

)
+ 4mg̃mq

(
U q̃
11U

q̃
22 + U q̃

12U
q̃
21

)
]
. (8.66)

The necessary DR quark counterterms are defined according to Eq. (8.39).
In a second step we have to take care for the counterterms of the dependent param-
eters. To this end, we can use again relation (8.60). We can calculate the trace and
the determinant for both, stops and sbottoms, on both sides of the equation. By
requiring the corresponding values of both sides to be the same, we can express
the three soft breaking parameters M2

Q̃
,M2

Ũ
,M2

D̃
in dependence of the input param-

eters. Having determined the soft breaking mass parameters, the mass eigenvalues
of the stops and sbottoms can be calculated by diagonalizing the right hand side of
Eq. (8.60). The obtained eigenvalues are then defined to be the three chosen on-shell
masses (m2

t̃1
)OS, (m2

b̃1
)OS, (m2

b̃2
)OS, as well as the dependent stop mass m2

t̃2
. Further, the

mixing angles θt̃, θb̃ can be derived as dependent parameters.
The only missing piece, are now the counterterms of the dependent parameters
m2

t̃2
, θt̃, θb̃. As the counterterms of the soft breaking parameters never appear ex-

plicitly in any vertex, we do not have to calculate them. First, we can derive the
counterterm for the squark mixing angles δθt̃ and δθb̃. Considering again Eq. (8.60),
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we can express them according to

δθq̃ =
δmq

(
Aq − µ (tanβ)−2I3Lq

)
+mq δAq − U q̃

11U
q̃
12

(
δm2

q̃1
− δm2

q̃2

)
(
U q̃
21U

q̃
12 + U q̃

11U
q̃
22

)(
m2

q̃1
−m2

q̃2

) , (8.67)

in dependence of the counterterms of the input parameters. In other renormalization
schemes, where the mixing angles belong to the set of input parameters, they can be
expressed in terms of the wave-function renormalization constants (cf. [221]). The
last remaining piece concerns the counterterm of the heavy stop mass m2

t̃2
. This one

can be also calculated by considering again the relations of Eq. (8.60)

δm2
t̃2

=
1

U t̃
21U

t̃
12

[
(
U t̃
21U

t̃
12 + U t̃

11U
t̃
22

)(
(U b̃

11)
2δm2

b̃1
+ (U b̃

21)
2δm2

b̃2

+ 2U b̃
11U

b̃
21

(
m2

b̃1
−m2

b̃2

)
δθb̃ − 2mbδmb − (U t̃

11)
2δm2

t̃1
+ 2mtδmt

)

− 2U t̃
11U

t̃
21

(
δmt

(
At − µ/ tanβ

)
+mt δAt − U t̃

11U
t̃
12δm

2
t̃1

)]
.(8.68)

It depends on the other squark mass counterterms, the trilinear coupling counterterm
as well as the above introduced mixing angle counterterm.
Altogether, we arrive at a stage, where we can fully renormalize all processes with
electroweak vector bosons or Higgs bosons in the final state. However, in order to
obtain a fully renormalized theory also in the case of a gluon in the final state,
we have to treat the gluon wave function renormalization constants and the αs

counterterm, additionally. This we will do in the following section.

8.5 Gluon Sector

8.5.1 Wave Function Renormalization Constant

For the case of a gluon in the final state, we also have to derive the gluon wave func-
tion renormalization constant. To this end, we start again with the bare Lagrangian

L0 = −1

4

(
∂µG

a
0µ − ∂νG

a
0 ν

)2
, (8.69)

where we can substitute according to the multiplicative renormalization the bare
field with the following renormalized expression

Ga
0µ → (1 +

1

2
δZg)Ga

µ , (8.70)
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with δZg being the gluon wave function renormalization constant. As the gluon is
renormalized on-shell, it remains after renormalization massless and thus does not
obtain a mass counterterm. For calculating the renormalization constant we again
write down the one-particle irreducible two-point function

Γ̂µν(k2) = −gµνk2 − Π̂µν(k2) (8.71)

M = −iǫµ(k)Γ̂µνǫ
∗ ν(k), (8.72)

with its matrix element M. The parameter Π̂µν(k2) indicates the gluon self energy

and can be split into two parts: the transversal component Π̂T (k2) and the longitu-
dinal component Π̂L(k2)

Π̂µν(k2) =

(
gµν −

kµkν
k2

)
Π̂T (k2) +

kµkν
k2

Π̂L(k2). (8.73)

Considering the renormalization conditions

ReΠ̂ij(k)ǫν(k)
∣∣∣
k2=m2

g

= 0 (8.74)

lim
k2→m2

g

1

k2 −m2
g

ReΠ̂ii(k)ǫν(k) = −ǫµ(k), (8.75)

and the relation kµǫ
µ = 0 we can neglect the longitudinal part for deriving the

counterterm. Therefore, the loop corrected self energy can be written as

Π̂T (k2) = ΠT (k2) + k2δZg, (8.76)

with ΠT (k2) being the renormalized self energy and k2δZg its counterpart. By ap-
plying the on-shell renormalization conditions of Eqs. (8.74) and (8.75), we obtain
finally the gluon wave function renormalization constant as

δZg = −Re
∂

∂k2
ΠT (k2)

∣∣∣
k2=m2

g=0
, (8.77)

which is dependent on the transversal component of the gluon self energy. The differ-
ent contributions to the gluon self energy are depicted in Fig. 8.3. All seven diagrams,
containing quarks, squarks, gluons, ghosts or gluinos, have to be taken into account.
At this point it is interesting to mention that in contrast to the wave function
renormalization constants of quark and squarks, also collinear infrared divergences
occur. The three diagrams of Fig. 8.3 which contain a gluon, a ghost or light squarks
give rise to the loop function B0(0, 0, 0) ∝ 1

εUV
− 1

εIR
that contain a collinear diver-

gence. This infrared divergence will be handled by the hard and collinear approxi-
mation that will be discussed in more detail in Section 9.3.2.
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g
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η

η

Figure 8.3: Gluon self energies, which contribute to the determination of the gluon wave
function renormalization constant dZg.

8.5.2 Renormalization of αs

The last basic ingredient which has to be derived is the counterterm for the strong
coupling constant gs, or the fine-structure constant αs, respectively. Hereby, we follow
the procedure of Ref. [222].
In order to fix the αs counterterm we consider the decay of an off-shell gluon into a
quark-antiquark pair. The corresponding Lagrangian looks like

L0 = −gsǫa µ
0 (p)ū0 s(k1)T

a
stγµv0 t(k2). (8.78)

We renormalize the bare Lagrangian by substituting the following expressions

v0 t(k2) = (1 +
1

2
δZq

LPL +
1

2
δZq

RPR) vt(k2) (8.79)

ū0 s(k1) = ūs(k1) (1 +
1

2
δZq

LPL +
1

2
δZq

RPR) (8.80)

ǫa µ
0 (p) = (1 + δZg ′) ǫa µ(p), (8.81)

where we consider the previously introduced quark wave function renormalization
constants Zq

L,R. Further, we apply the off-shell defined gluon wave function renormal-
ization constant

δZg ′ = −1

2

Re (ΠT (p2))

p2
. (8.82)
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In order to determine the counterterm of the strong coupling constant, we compare
the UV-divergent terms arising from the vertex corrections to the gluon decay into
a quark-antiquark pair with the corresponding counterterms obtained by Eqs. (8.79)
to (8.81). As only terms proportional to γµ of the vertex corrections are of interest
we can write the following simplified expression (see Ref. [222])

(1 +
δgs
gs

)(1 +
δZg ′

2
)(1 +

δZq
L

2
PL +

δZq
R

2
PR)γµ(1 +

δZq
L

2
PL +

δZq
R

2
PR)

= γµ(1 − Λ− ΛAγ5) + . . . , (8.83)

where the term on the left hand side arises from the counterterm contributions. The
expression on the right hand side indicates the terms linear in γµ which arise from the
vertex corrections to the decay. Here we distinguish additionally between the terms
linear in γµ named Λ and those linear in γµγ5 denoted by ΛA. All terms proportional
to γµγ5 have to cancel each other and are UV-finite.
Therefore, we end up with the following relation for determining the counterterm
δgs

δgs
gs

= −Λ− 1

2
(δZg ′ + δZq

L + δZq
R). (8.84)

In total four different diagrams contribute to the vertex correction of the quark-
quark-gluon vertex. This vertex corresponds to the vertex B̂ introduced in the pre-
vious chapter. The contributing UV divergent diagrams are depicted in Fig. 8.4.
From the already calculated vertex corrections we are able to extract all terms ∆
which are UV-divergent and linear in γµ. Furthermore, we can distinguish between
contributions arising from the pure SM vertex corrections ΛSM, DR and the pure super-
symmetric ones ΛSUSY, DR.
Similar to extracting the UV-divergent terms out of the necessary vertex corrections,
we can do the same for the wave function renormalization constants of the gluons
and quarks. The contributing diagrams are depicted in Fig. 8.4, respectively.
Finally, we arrive at the following SM contributions to Eq. (8.84)

δZg ′ SM, DR =
αs

4π
∆

(
−2

3
nf +

5

3
CA

)
(8.85)

δZq SM, DR
L = δZq SM, DR

R =
αs

4π
∆ (−CF ) (8.86)

ΛSM, DR =
αs

4π
∆ (CF + CA), (8.87)

where nf = 6 indicates the number of flavors arising from the sum over the quark
loop. The color factors are given as CF = 4

3
and CA = 3. The corresponding super-
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Figure 8.4: Overview of the diagrams which contribute to the αs counterterm. All necessary
expressions linear in αs

4π ∆ are given.
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symmetric terms are given by

δZg ′ SUSY, DR =
αs

4π
∆

(
−1

3
nf −

2

3
CA

)
(8.88)

δZq SUSY, DR
L = δZq SUSY, DR

R =
αs

4π
∆ (−CF ) (8.89)

ΛSUSY, DR =
αs

4π
∆CF , (8.90)

where nf = 6 comes from the sum over the squark loop. Putting all necessary pieces
together we obtain the δgs counterterms

(
δgs
gs

)SM, DR

=
αs

8π
∆

(
2

3
nf −

11

3
CA

)
(8.91)

(
δgs
gs

)SUSY, DR

=
αs

8π
∆

(
1

3
nf +

2

3
CA

)
, (8.92)

where the first indicates the pure standard model counterterm, the second the super-
symmetric one. Both together result in the final MSSM counterterm

(
δgs
gs

)DR

=
αs

8π
∆ (nf − 3CA) . (8.93)

As numerical input value for αs we use so far the typical Standard Model value
αMS,SM
s (MZ) with nf = 5. However, principally αDR,MSSM

s (Q) with nf = 6 should be
used within the MSSM, which is work in progress. An appropriate treatment of the
running of αs in the MSSM can be found in Ref. [223].
Having precisely deduced the source of every single contribution of the δgs counter-
term, it allows us to carefully check the UV-divergences in our code for every single
contribution against each other. Thus, we have a powerful tool to validate different
parts of our code. We have successfully checked that our code is UV-convergent for
all possible final states.

8.6 Vertex Counterterms

Having derived all necessary counterterms for masses, mixing angles, and the strong
coupling constant as well as the needed wave function renormalization constants, we
are now able to construct the vertex counterterms for all corrected couplings. As an
example we focus on the vertex counterterm to the coupling Â

qg
j,n, which is present

for all channels and all final states.
On the basis of the tree-level coupling

Â
qg
ij = i [A

qg L
ij PL + A

qg R
ij PR], (8.94)
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with coefficients given by

A
ug R
ij = − g2mug

sin θW
√

2MW sin β
Nj 4U

ug

i2 (8.95)

−
√

2
g2

sin θW

(
(qu − I3u)

sin θW
cos θW

Nj 1 + I3uNj 2

)
U

ug

i1

A
ug L
ij = − g2

mug

sin θW
√

2MW sin β
N∗

j 4U
ug

i1 (8.96)

+
√

2g2
qu

cos θW
N∗

j 1U
ug

i2

we can derive the corresponding counterterm, which features the same generic struc-
ture

δÂ
qg
ij = i [δA

qg L
ij PL + δA

qg R
ij PR]. (8.97)

In order to derive the coefficients of the counterterm, we have to consider all param-
eters of the original coupling which are connected to the strong coupling sector, and
substitute those by their corresponding counterterms. In the following example, this
applies for the quark mass counterterm δmug , and the counterterm of the mixing
matrix δU

ug

i2 :

δA
ug R
ij = − g2mug

sin θW
√

2MW sin β
Nj 4U

ug

i2

(
δmug

mug

+
δU

ug

i2

U
ug

i2

)
(8.98)

−
√

2g2
sin θW

(
(qu − I3u)

sin θW
cos θW

Nj 1 + I3uNj 2

)
δU

ug

i1

+ A
ug R
1j

1

2
δZ

ug

1 i + A
ug R
2j

1

2
δZ

ug

2 i + A
ug R
ij

1

2
δZ

∗ug

L

δA
ug L
ij = − g2mug

sin θW
√

2MW sin β
N∗

j 4U
ug

i1

(
δmug

mug

+
δU

ug

i1

U
ug

i1

)
(8.99)

+

√
2g2qu

cos θW
N∗

j 1δU
ug

i2

+ A
ug L
1j

1

2
δZ

ug

1 i + A
ug L
2j

1

2
δZ

ug

2 i + A
ug L
ij

1

2
δZ

∗ug

R .

Also the corresponding wave function renormalization constants for the quark and
squark legs of the coupling have to be considered.
With this approach, we are able to construct all vertex counterterms which are
needed within the calculation. The derived vertex counterterms for the couplings
which are involved in the processes with a Higgs boson in the final state are given
in Appendix B.
With the generic structure introduced in Section 7.3, we can now also easily obtain
the full squared matrix element that considers all counterterms. Similar to Eq. (7.50),
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we can write the generic structure in case of a Higgs boson in the final state according
to

|M|2counter = MδA1
s Mtree∗

s + 2Re(MδA1
s Mδtree∗

t ) + 2Re(MδA1
s Mtree∗

u )

+ MδF
s Mδtree∗

s + 2Re(MδF
s Mtree∗

t ) + 2Re(MδF
s Mtree∗

u )

+ MδP
s Mδtree∗

s + 2Re(MδP
s Mtree∗

t ) + 2Re(MδP
s Mtree∗

u )

+ MδA2
t Mδtree∗

t + 2Re(MδA2
t Mtree∗

s ) + 2Re(MδA2
t Mtree∗

u ) (8.100)

+ MδG
t Mδtree∗

t + 2Re(MδG
t Mtree∗

s ) + 2Re(MδG
t Mtree∗

u )

+ MδP
t Mδtree∗

t + 2Re(MδP
t Mtree∗

s ) + 2Re(MδP
t Mtree∗

u )

+ MδA3
u Mδtree∗

u + 2Re(MδA3
u Mtree∗

s ) + 2Re(MδA3
u Mtree∗

t ),

where we put the corresponding vertex counterterms (δA1,2,3, δF, δG) and propaga-
tor counterterms (δP) according to the supscript of the amplitudes.
The same procedure can be performed for the neutralino-stop processes with a vec-
tor boson in the final state. We have derived all necessary counterterms, and have
calculated the full squared matrix element by using the generic structure introduced
in Section 7.3.

Conclusions. Finally, we have performed the full calculation of the virtual contri-
butions. We have addressed the necessary propagator corrections, vertex corrections,
and box diagrams. Due to a dedicated renormalization procedure, which has been in-
troduced in this chapter, we managed to cancel all occurring UV divergences within
the whole calculation. We have performed extensive UV-checks for all contributing
processes of all final states, and can guarantee a full UV convergent calculation and
implementation.
However, we are not yet completely at the end of the calculation. Still there are
uncancelled infrared divergences, which occur, and have to be cancelled in a sec-
ond, dedicated step. The corresponding treatment will be the topic of the following
chapter.
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In this chapter we discuss the treatment of the remaining infrared divergences. After
a brief introduction to infrared divergences in general and a motivation for including
real emission diagrams, their calculation will be outlined. In a dedicated section we
discuss the phase space slicing method for pure soft divergences, which occur in the
processes with a Higgs or electroweak vector boson in the final state. As a second
step, we focus on the treatment when both, soft and collinear divergences appear,
which is the case for a gluon in the final state. For completeness, we address also
difficulties that arise due to intermediate on-shell particles appearing in our matrix
element.

9.1 Infrared Divergences

In order to get a finite result for the final full next-to-leading order calculation, one
has also to treat carefully the infrared divergences (IR) arising from some virtual
corrections in which at least one gluon is exchanged. These IR-divergences cancel
against specific similar divergences of the real radiation diagrams where a gluon is
emitted from one of the initial state squarks or final state quarks and gluons. In
the total cross section, finally, all IR-divergences arising from virtual diagrams are
cancelled exactly by the divergences of the real contributions which makes the full
next-to-leading order result infrared safe, which was shown by the Kinoshita-Lee-
Nauenberg theorem.

σNLO =

∫

2→3

dσreal +

∫

2→2

dσvirtual = finite (9.1)

However, the cancellation of these divergences is more involved than for the UV
divergences. Whereas the IR divergences in the virtual diagrams arise due to virtual
gluon exchange, the corresponding IR divergences in the real corrections occur only
when integrating over the phase space of the external gluon (see Eq. (9.1)). The
treatment of these infrared divergences is again in D dimensions possible, and should
be worked out in the subsequent sections.
In order to understand the kinds of appearing infrared divergences, a generic real
emission diagram is depicted in Fig. 9.1. The grey blob indicates the usual tree-level
contribution A0 and has one outgoing leg of which a gluon is radiated off. It is the
denominator of the intermediate propagator before the gluon emission which give
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p+ k p

k

A0(p+ k)

p+ k p

k

A0(p+ k)

Figure 9.1: Schematic real emission diagram. The grey blob indicates for the absorbed
contribution which is similar to the tree-level. The outgoing fermion / gluon
line shows an exemplary leg of which a gluon is radiated off.

rise to two different kinds of infrared divergences:

1

(p+ k)2 −m2
=

1

2 p · k =
1

ω(Ep − |~p| cos θ)

ω→0 ∨−−−−−−−→
mp=0 ∧ θ→0

∞, (9.2)

where k = (ω,~k) is the D-momentum of the radiated gluon and p = (Ep, ~p) of the
second final state particle (see Fig. 9.1). If the momentum of the gluon becomes
almost zero (Ek → 0), a so-called soft divergence appears. Is the outgoing leg also
a massless particle, like a gluon in our case, a collinear divergence can be caused if
the angle between both outgoing particles is tiny (θ → 0).

9.2 Calculation of Real Emission Processes

In order to obtain a finite result for the total cross section, we have to take into ac-
count all possible real emission processes of all final states. Fig. 9.2 gives an overview
over all processes in case of a Higgs or an electroweak vector boson in the final state.
In Fig. 9.3 all diagrams involving a gluon in the final state are depicted. On the
example of the Higgs final state, we give the amplitudes for all possible real emission
processes. The matrix elements Msi, Msp, and Msf denote the amplitudes arising
from gluon emission off the initial state squark, the quark propagator, and the final
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state quark in the s-channel, respectively. They are given as follows

Msi = ū(p3) i [F s
LPL + F s

RPR] i
/p3 + /p4 +mq1

s34 −m2
q1

i [As
1, LPL + As

1, RPR]

× i

t25 −m2
2

i g0(2p
µ
2 − pµ5 ) u(p1) ǫ

∗
µ(p5) (9.3)

Msp = ū(p3) i [F s
LPL + F s

RPR] i
/p3 + /p4 +mq1

s34 −m2
q1

i g1γ
µ i
/p1 + /p2 +mq1

s12 −m2
q1

× i [As
1, LPL + As

1, RPR] u(p1) ǫ
∗
µ(p5) (9.4)

Msf = ū(p3) i g1γ
µ i
/p3 + /p5 +m3

s35 −m2
3

i [F s
LPL + F s

RPR] i
/p1 + /p2 +mq1

s12 −m2
q1

× i [As
1, LPL + As

1, RPR] u(p1) ǫ
∗
µ(p5). (9.5)

The same naming convention is used for the corresponding real radiation in case of
the t-channel diagrams

Mti = ū(p3) i [As
2, LPL + As

2, RPR] u(p1)
i

t31 −m2
q2

iG
i

t25 −m2
2

i g0(2p
µ
2 − pµ5 ) ǫ∗µ(p5)

(9.6)

Mtp = ū(p3) i [As
2, LPL + As

2, RPR] u(p1)
i

t31 −m2
q2

i g0(p
µ
2 − pµ4 + pµ3 − pµ1)

× i

t24 −m2
q2

iG ǫ∗µ(p5) (9.7)

Mtf = ū(p3) i g1γ
µ i
/p3 + /p5 +m3

s35 −m2
3

i [As
2, LPL + As

2, RPR] u(p1)
i

t24 −m2
q2

iG ǫ∗µ(p5),

(9.8)

as well as for the u-channel. However, in the latter case no gluon emission of the
propagator is possible

Mui = ū(p3) i [As
3, LPL + As

3, RPR]
i

t25 −m2
2

i g0(2p
µ
2 − pµ5) i

/p1 − /p4 +mq3

t14 −m2
q3

× i [Hs
LPL +Hs

RPR] u(p1) ǫ
∗
µ(p5) (9.9)

Muf = ū(p3) i g1γ
µ i
/p3 + /p5 +m3

s35 −m2
3

i [As
3, LPL + As

3, RPR] i
/p3 − /p4 +mq3

t14 −m2
q3

× i [Hs
LPL +Hs

RPR] u(p1) ǫ
∗
µ(p5). (9.10)

In the above introduced matrix elements, the same conventions regarding the nam-
ing of the couplings, external and internal momenta, masses etc. have been used
as introduced in Sec. 7.3. The additional gluon momentum is denoted as p5. The
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Mandelstam variables sij and tij are defined as

sij = (pi + pj)
2 (9.11)

tij = (pi − pj)
2. (9.12)

Moreover we substituted for simplification the following to couplings

−igsT a(pin + pout)
µ = ig0(pin + pout)

µ (9.13)

−igsT bγµ = ig1γ
µ. (9.14)

The full squared matrix element

|M|2real =
∑

x

∑

y

MxM∗
y, (9.15)

with x, y = si, sp, sf, ti, tp, tf, ui, uf is obtained by considering all permutations of
the above introduced single amplitudes. This was performed by using FORM.
Specific contributions to the full squared matrix element are now supposed to cancel
against the infrared poles of the virtual contributions. However, the cancellation
between the infrared divergences arising from the virtual contributions and those
of the real contributions is not that straightforward as for the cancellation of the
UV divergences within the virtual part. This is due to the fact that the divergences
in the real contributions appear only by integrating over the gluon momentum. In
the following we want to focus on one method which can be applied to address this
problem, and is used within the DM@NLO code.
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(b) Real emission from the t-channel diagram. Specific for an electroweak vector boson is the last
diagram in the row, as an corresponding coupling is absent for a Higgs boson in the final state.
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Figure 9.2: Real emission diagrams in case of a Higgs (φ) or an electroweak vector boson
(V) in the final state. From left to right, gluon emission from the initial state
squark, the propagator, and the final state quark is depicted. Only the last
diagram of Fig. 9.2(b) is special in case of an electroweak vector boson in the
final state.
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Figure 9.3: Real emission diagrams in case of a gluon in the final state. From left to right,
gluon emission from the initial state squark as well as from the final state
quark and gluon is depicted. The diagrams of Fig. 9.3(c) are specific for this
final state.
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9.3 Phase Space Slicing

The infrared divergences arising in the virtual contributions can be isolated by work-
ing in D dimensions as discussed in Sec. 7.1. However, in case of the infrared diver-
gences occurring within the real emission processes an additional, special treatment
is necessary. This is due to the fact, that divergences in the 2 → 3 processes arise,
when integrating over the gluon phase space. To address this problem the so-called
phase space slicing method is a possible method.
Within this approach the phase space is sliced into a soft part (σsoft) and a hard
part σhard (see Eq. (9.16))

σreal = σsoft(∆E) + σhard(∆E) (9.16)

= σsoft(∆E) + σhard
coll (∆E,∆θ) + σhard

non−coll(∆E,∆θ). (9.17)

When also collinear divergences can arise like in case of a gluon in the final state,
we cut the hard part again into two pieces, a hard and collinear σhard

coll , and a hard
and non-collinear part σhard

non−coll (see Eq. (9.17)). Fig. 9.4 shows an illustration of the
sliced phase space.
We will see that the amplitudes factorize in their soft and collinear limit in terms
of the 2 → 2 phase space. This factorization makes an easy cancellation of the real
and virtual infrared poles possible.
In the following we focus first on the soft gluon approximation when a Higgs or
a vector boson is in the final state. In a second step we discuss the special case
involving a gluon in the final state. Here, one has to take care also for collinear
divergences such that a special treatment is necessary.

coll

hard

non-collσ

softσ

σhard
pII

pT

ΔE

Δθ

Figure 9.4: Schematic overview over the regions of the parameter space which have to be
treated separately. We distinguish between the soft (soft and collinear) part
σsoft, the hard and collinear part σhard

coll , as well as the hard and non-collinear
part σhard

non−coll.
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9.3.1 Processes with a Higgs or an Electroweak Vector Boson in
the Final State
Treatment of Soft Divergences

With the gluon being emitted from massive particles, the processes with a Higgs
or a vector boson in the final state give only rise to soft divergences. Considering
the contributing 2 → 3 processes shown in Fig. 9.2, only diagrams with a gluon
radiated of an initial state squark, or a final state quark feature a divergence. Real
emission off the propagator does not lead to a divergence, as both propagators are
independent of the gluon momentum (cf. Eqs. (9.4), and (9.7)).
In order to cancel the soft divergences arising from these diagrams with the corre-
sponding contributions of the virtual corrections (see Figs. 9.5 and 9.6) we would
like to factorize the divergent part in terms of the 2 → 2 phase space. Considering
Fig. 9.1, we can phrase the 2 → 3 process dependent on an amplitude A0 which
is similar to the tree-level, but with an outgoing fermion carrying the momentum
p+ k. From this outgoing leg the gluon with momentum k is radiated off. Thus we
can write

M = A0(p+ k)
i(/p + /k +m)

(p+ k)2 −m2
(−igsT aγµ)u(p)ε∗µ(k). (9.18)

Assuming the soft limit kµ → 0, we can write the above equation as

M = A0(p)u(p)
p · ε∗
p · k (gsT

a). (9.19)

Thus, in the soft gluon approximation (often also called eikonal approximation), we
are able factorize the real emission amplitude in terms of the tree-level amplitude,
a term which contains the divergence, and a factor arising from the process specific
coupling.
The same expression can be also derived in the case a gluon is radiated off an ingoing
sfermion. Finally, the most general expression is given by

M = M0

∑

i

±pi · ε
∗

pi · k
(− gsT

a), (9.20)

where + is valid for an outgoing particle or incoming antiparticle, and − for an
incoming particle or an outgoing antiparticle.
Thus, we can write the squared matrix element of all real radiation diagrams for each
specific process χ̃0

1t̃1 → tφ, V with φ = h0, H0, A0, H± and Z0,W±, γ (see Fig. 9.2)
in the soft limit by using the eikonal approximation as follows

M2 = |M0|2 × (− g2sCF )

[
p22

(p2 · k)2
+

p23
(p3 · k)2

− 2p2 · p3
(p2 · k)(k · p3)

]
. (9.21)
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The first term arises from the squared initial state radiation contribution, the second
one from the squared final state radiation diagram, and the third expression denotes
their interference terms.
Having managed to factorize the squared matrix element of the real emission in
terms of the tree level contribution, we now have to separate also the phase space.
Therefore, we concentrate now on the integration over the 2 → 3 phase space in
dimensional regularization with D > 4. We can write the partial cross section as

dσ =
1

Φ

∫
dD−1p3

(2π)D−12E3

dD−1p4
(2π)D−12E4

dD−1k

(2π)D−12ω
(2π)Dδ(D)(p1 + p2 − p3 − p4 − k)|M|2,

(9.22)

where Φ indicates the flux factor. Due to the soft gluon approximation we can assume
the momentum of the gluon being negligible in the delta function kµ = 0 such that
we can separate the integration over the gluon phase space from the two-body phase
space

dΓ3

∣∣
soft

=

[
dD−1p3

(2π)D−12E3

dD−1p4
(2π)D−12E4

(2π)Dδ(D)(p1 + p2 − p3 − p4)

]
dD−1k

(2π)D−12ω
,

(9.23)

with

dD−1p3
(2π)D−12E3

dD−1p4
(2π)D−12E4

(2π)Dδ(D)(p1 + p2 − p3 − p4) = dΓ2 (9.24)

being the usual two-body phase space in D dimensions. Taking into account
Eq. (9.21) and Eq. (9.23) we can express Eq. (9.22) as

(
dσ

dΓ2

)
= −

(
dσ

dΓ2

)

0

× g2sCFµ
4−D

8π3

∫

|~k|≤δs

dD−1k

(2π)D−4

1

2ω

×
[

p22
(p2 · k)2

+
p23

(p3 · k)2
− 2p2 · p3

(p2 · k)(k · p3)

]
,

(9.25)

where µ denotes the renormalization scale. This gives us the factorized form of the
phase space we aimed for, which is valid in the soft limit |~k| ≤ δs.
However, we now have to isolate the infrared divergence of the remaining integration
over the D-momentum of the gluon. Thus, we focus on the following integral, which
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is a generic form of the appearing expressions in Eq. (9.25)

I ′ab = (a · b) Iab (9.26)

Iab = µ4−D

∫

|~k|≤δs

dD−1k

(2π)D−4

1

2ω

2

(a · k)(b · k)
, (9.27)

where a and b denote the D-momenta of the particles from which the gluon k is
radiated off. This integral has been extensively studied in the literature, see e.g.
Refs. [194, 224], which we will follow for the subsequent derivation.
First, the integration over the D-momentum can be reformulated into an integration
over the gluon’s absolute momentum and the spatial angle θ

∫
dD−1k =

∫
d|~k| |~k|D−2

∫
dΩD−2 = 2

π(D−2)/2

Γ(D−2
2

)

∫
d|~k| |~k|D−2

∫ π

0

dθ sinD−3 θ.

(9.28)

In a second step we re-express the product of the scalar products. To this end, we
introduce the new momenta p and q which are related to the momenta a and b as
follows

p = αa and q = b with (p− q)2 = 0. (9.29)

The variable α is hereby fixed due to the condition (p − q)2 = 0 and has to fulfil
αa0−b0

b0
> 0. After reformulating the scalar products, we make use of the Feynman

parametrization and can write the denominator in dependence of P = q + (p− q)x:

1

(a · k)(b · k)
=

α

(p · k)(q · k)
=

∫ 1

0

dx
α

[(q · k)(1 − x) + (p · k)x]2
=

∫ 1

0

dx
α

(P · k)2
.

(9.30)

Inserting Eq. (9.28) and Eq. (9.30) in Eq. (9.27) we arrive at the following expression

Iab = 2α
µ4−D

(2π)D−4

π(D−2)/2

Γ(D−2
2

)

∫ δs

0

dk kD−3

∫ 1

−1

(d cos θ) sinD−4 θ

∫ 1

0

dx
1

k2(P 0 − |~P | cos θ)2
,

(9.31)

where we have taken into account the relation k ≡ |~k| = k0 = ω which is valid
due to the light-like D-momentum of the gluon. This we can also use in order to
reformulate the scalar product P ·k = k2(P 0−|~P | cos θ)2 in dependence of the angle
θ. Considering all momenta k appearing in Eq. (9.31), we can extract the arising
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soft infrared divergence

∫ δs

0

dk kD−5 =
δ
(D−4)
s

D − 4
= −δ

(D−4)
s

2ε
, (9.32)

where D = 4 − 2ε. Using the relation of Eq. (9.32) we can further write

Iab = α
2

D − 4

π(D−2)/2

(2π)D−4

1

Γ(D−2
2

)

δ
(D−4)
s

µD−4

∫ 1

−1

dy

∫ 1

0

dx
(1 − y2)(D−4)/2

(P 0 − |~P |y)2
, (9.33)

where we substituted the integration variable according to y = cos θ. In comparison
to Eq. (9.31) we rearranged the prefactors in such a way that we can expand them
easily up to orders O(ε). After the expansion of all terms depending on ε and the
multiplication with the infrared pole −1/ε we can write Eq. (9.33) as follows

Iab = απ

∫ 1

0

dx

∫ 1

−1

dy
−1

ε
− log4π + γE + log δ2s

µ2

(P 0 − |~P |y)2
+

log(1 − y2)

(P 0 − |~P |y)2
, (9.34)

where we applied the definition of the Euler–Mascheroni constant Γ′(1) = −γE .
Moreover, we split the integrand into two terms, which is useful for the remaining
integration over y. At this point, we do not want to go into too much detail as the
following integration is quite lengthy. For more details we refer to Refs. [194, 224].
The result is given by

Iab = 2πα

∫ 1

0

dx
1

P 2

{
−1

ε
− log4π + γE + log

4δ2s
µ2

+
P 0

|~P |
log

(
P 0 − |~P |
P 0 + |~P |

)}
, (9.35)

where we have assumed that P 0 > |~P |2. Performing the very last integration over x
we arrive at our final expression for the integral Iab which we need to finally calculate
Eq. (9.25).

I ′ab =
4πα(a.b)

(αa)2 − b2

{
1

2

(
−1

ε
− log4π + γE + log

4δ2s
µ2

)
ln

(αa)2

b2

+

[
1

4
ln2

(
P 0 − |~P |
P 0 + |~P |

)
+ Li2

(
1 − P 0 − |~P |

α2a2−b2

2(αa0−b0)

)
+ Li2

(
1 − P 0 + |~P |

α2a2−b2

2(αa0−b0)

)]P=αa

P=b



 .

(9.36)

Hereby, we reintroduced again our starting variables a and b, see Eq. (9.29).
The special case of the integral Ia2 , where the D-momenta a and b are equal, can
be directly obtained from Eq. (9.34), as we do not need to perform a Feynman
parametrization and the additional integration over x in this case. Therefore, we
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obtain the following expression

I ′a2 = 2π

{
−1

ε
− log4π + γE + log

4δ2s
µ2

+
a0

|~a| ln
(
a0 − |~a|
a0 + |~a|

)}
. (9.37)

Finally, we have derived the integrals needed for calculating Eq. (9.25). Thus we are
able to explicitly isolate the soft divergence which arise due to the integration over
the gluon phase space, and managed to factorize this in dependence of the two-body
phase space of the corresponding tree level.
Fixing the kinematics of the processes in the centre of mass (CMS) system of the
incoming particles we can express the D-momenta of the participating particles as
follows

p1 =

√
s

2

(
2E1√
s
, ..., 0, 0, β1

)
(9.38)

p2 =

√
s

2

(
2E2√
s
, ..., 0, 0,−β1

)
(9.39)

p3 =

√
s

2

(
2E3√
s
, ..., 0, β2 sin θ, β2 cos θ

)
(9.40)

p4 =

√
s

2

(
2E4√
s
, ..., 0,−β2 sin θ,−β2 cos θ

)
, (9.41)

where their energies and βi=1,2 are given by

E1 =
s+m2

1 −m2
2

2
√
s

E2 =
s+m2

2 −m2
1

2
√
s

β1 =
λ1/2(s,m2

1, m
2
2)

s
(9.42)

E3 =
s+m2

3 −m2
4

2
√
s

E4 =
s+m2

4 −m2
3

2
√
s

β2 =
λ1/2(s,m2

3, m
2
4)

s
, (9.43)

with

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz (9.44)

being the so-called Källén function. With the above defined D-momenta, we can
express the studied real radiation diagrams in the soft limit with Eq. (9.36) and
Eq. (9.37).
The final expression for the considered real radiation diagrams in the soft limit is
given by

(
dσ

dΓ2

)
= −

(
dσ

dΓ2

)

0

× g2sCF

16π3

[
I ′p22

(δs) + I ′p23
(δs) − 2I ′p2p3(δs)

]
. (9.45)
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frared divergent loop integrals are given.
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Figure 9.6: Overview (part II) of the soft diagrams of the real (left) and virtual part (right)
which cancel each other. Besides the colour factor, also the corresponding in-
frared divergent loop integrals are given.
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Conclusions. Having derived the soft limit of the necessary real radiation diagrams
in terms of the tree-level matrix element, we are able to cancel easily the correspond-
ing infrared divergences of the virtual and real corrections. This we have checked in
our DM@NLO implementation diagram by diagram, and can guarantee infrared conver-
gence for all processes. Figs. 9.5 and 9.6 show the corresponding soft diagrams which
are cancelled between the real and virtual part. Additionally, the infrared divergent
loop diagrams are given.
Especially interesting is the last row in Fig. 9.6. It shows the only infrared divergent
vertex correction in case of a Higgs or electroweak vector boson in the final state. It
arises only in processes featuring an u-channel, and is thus absent for a photon in
the final state.
Another powerful check is the test concerning the cutoff independence. When per-
forming the real emission computation, the real radiation diagrams are evaluated
according to the soft gluon approximation until the cutoff δs (see Eq. (9.45)). For
values larger than the cutoff, the usual real radiation calculation as described in
Sec. 9.2 is performed. However, the whole calculation should be independent of the
cutoff in the end. The cutoff behaviour has been intensively studied such that we
can ensure cutoff independence for a reasonable cutoff range.

9.3.2 Processes with a Gluon in the Final State

Treatment of Soft and Collinear Divergences

Up to now we have only considered processes, where a gluon was radiated off a mas-
sive particle. However, in the case of a gluon in the final state, we have to consider
additionally gluon emission off a gluon. This gives rise not only to soft, but also
to collinear divergences, which have to be treated carefully. To this end, basically
two approaches exist to extend the phase space slicing algorithm to these purposes:
the one cutoff and the two cutoff method. A comparison of both is performed for
instance in Ref. [225], where it has been shown, that both methods agree within
their systematic and statistic errors.
In contrast to the two cutoff method, the single cutoff approach introduces only one
condition to distinguish between the finite and divergent part of the phase space.
The infrared divergent part of the phase space is defined as the region where the
final state particle i and the emitted particle j are not longer resolvable. Thus, the
divergent region is defined by the requirement sij = 2pipj < scut, with scut being a
small value. Further details on the one cutoff method can be found in Refs. [226,
227].
In this work, however, we follow the two-cutoff approach, introduced by Ref. [228].
According to Eq. (9.17) we can slice the phase space with an additional cutoff
parameter δc into three different regions: the soft (and eventually also collinear)
part, the hard and collinear region and the pure hard and non-collinear phase
space. Such, we can define the hard and collinear phase space region by requir-
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ing ω > δs∧ (1−cos θpk) ≦ δc. In contrast to the pure massive initial and final states
of the previous section, also the soft part ω ≦ δs can become collinear now. As the
introduced general integrals of the previous section (see Eqs. (9.36) and (9.37)) do
not take into account collinear divergences and thus possible double poles, we have
to develop new expressions for the correct treatment of the soft and collinear case.
Hereby, we follow the procedure of the two-cutoff method described in Ref. [228].

Soft and collinear. First, we start with the treatment of the processes which can
become soft and collinear in the soft limit of the phase space ω ≦ δs. Such behaviour
occurs when a diagram with gluon emission from a final state gluon interferes with
real radiation from an initial state squark or a final state quark, respectively. The
corresponding diagrams are depicted in Fig. 9.3. Similar to the previous case, we
can perform also for the non-abelian cases an eikonal approximation, which has
been shown in detail in Refs. [229–231]. Thus, we arrive at

|M|2 =
∑

spin

|M0|2 ×
−CA

2

[
− 2p2 · p4

(p2 · k)(p4 · k)
− 2p3 · p4

(p3 · k)(p4 · k)

]
. (9.46)

Due to the soft gluon approximation kµ → 0, the 3-body phase space dΓ3 (cf.
Eq. (9.22)) factorizes in terms of the 2-body phase space Γ2, such that we can
write in D dimensions

dΓ3

∣∣
soft

= dΓ2
dD−1k

(2π)D−12ω
= dΓ2

dk kD−2

(2π)D−12k
dθ1 sinD−3 θ1 dθ2 sinD−4 θ2 ΩD−4,

(9.47)

with θ1 being the polar and θ2 the azimuthal angle. The solid angle ΩD−4 can be
rewritten according to

ΩD−4 =
2π

D−3
2

Γ
(
D−3
2

) =
2π

1−2ε
2 Γ(1 − ε)√

π22εΓ(1 − 2ε)
, (9.48)

such that Eq. (9.47) can be reformulated

dΓ3

∣∣
soft

= dΓ2
πε Γ(1 − ε)

(2π)3 Γ(1 − 2ε)
dkkD−3 dθ1 sinD−3 θ1 dθ2 sinD−4 θ2. (9.49)

The corresponding differential cross section (dσ/dΓ2) in terms of the differential
cross section of the tree-level (dσ/dΓ2)0 and the phase space integration over the
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emitted gluon D-momentum is obtained as

(
dσ

dΓ2

)
= −

(
dσ

dΓ2

)

0

× g2s
8π3

µ4−Dπε Γ(1 − ε)

Γ(1 − 2ε)

∫ δs

0

dkkD−3

∫ π

0

dθ1 sinD−3 θ1

×
∫ π

0

dθ2 sinD−4 θ2
−CA

2

[
− 2p2 · p4

(p2 · k)(p4 · k)
− 2p3 · p4

(p3 · k)(p4 · k)

]
,

(9.50)

with CA being the color factor. Up to corrections of O(δs) we can express the D-
momentum of the emitted gluon in the CMS-system of the incoming particles as

k = k (1, ..., 0, sin θ1 sin θ2, sin θ1 cos θ2, cos θ1) . (9.51)

Thus, we get for the necessary scalar products of Eq. (9.50) the following expressions

(p2 · k) =
k
√
s

2
xp2k =

k
√
s

2

(
2E2√
s

+ β1 cos θ1

)
(9.52)

(p3 · k) =
k
√
s

2
xp3k =

k
√
s

2

(
2E3√
s
− β2 sin θ sin θ1 cos θ2 − β2 cos θ cos θ1

)
(9.53)

(p4 · k) =
k
√
s

2
xp4k =

k
√
s

2

(
2E4√
s

+ β2 sin θ sin θ1 cos θ2 + β2 cos θ cos θ1

)
, (9.54)

where we introduced the short-hand notation xpik for the terms that are independent
of the radiated gluon’s energy. Bringing everything together we end up with

(
dσ

dΓ2

)
=

(
dσ

dΓ2

)

0

× g2sCA

16π3

µ4−Dπε Γ(1 − ε)

Γ(1 − 2ε)

∫ δs

0

dkkD−3

∫ π

0

dθ1 sinD−3 θ1

×
∫ π

0

dθ2 sinD−4 θ2

[
− 4(m2

2 − t)

k2s xp2k xp4k
− 4(s−m2

3)

k2s xp3k xp4k

]
. (9.55)

With a little trick we can now re-express the second term of the scalar products
which will be helpful for the final integration in the next step.

(
dσ

dΓ2

)
=

(
dσ

dΓ2

)

0

× g2sCA

16π3

µ4−Dπε Γ(1 − ε)

Γ(1 − 2ε)

1

s

∫ δs

0

dkkD−5

∫ π

0

dθ1 sinD−3 θ1

×
∫ π

0

dθ2 sinD−4 θ2

[
−4(m2

2 − t)

xp2k xp4k
− 2(s−m2

3)

xp3k
− 2(s−m2

3)

xp4k

]
.

(9.56)
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Furthermore, we can identify the soft divergence arising from the integration over
the energy of the emitted gluon

∫ δs

0

dk kD−5 =
δ
(D−4)
s

D − 4
= −δ

(D−4)
s

2ε
. (9.57)

Having been able to isolate the first infrared divergence, we now have to extract
the second, collinear divergence, which is hidden within the integration over both
angles, the polar angle θ1, and the azimuthal θ2. In the following we use again the
definition D = 4 − 2ε. The remaining integration can be expressed in the following
generic form

I(l,m)
ε =

∫ π

0

dθ1 sin1−2ε θ1

∫ π

0

dθ2 sin−2ε θ2
(a+ b cos θ1)

−l

(A +B cos θ1 + C sin θ1 cos θ2)m
, (9.58)

where one factor depends on both, θ1 and θ2, the other, however, only on the polar
angle θ1. Thanks to our little trick in Eq. (9.56) we achieved also for the second
summand of Eq. (9.55) this parametrization.
These kind of integrals are well known and tabulated in dedicated literature [226,

232–234]. For our cases we need two different cases. The first one I
(0,1)
ε (xp3k) can be

expressed only in terms of one of the two factors of Eq. (9.58) with the coefficients
fulfilling the condition A2 6= B2 + C2 and is taken from [234]

I(0,1)ε = Y + εZ

=
π√

B2 + C2

{
ln
A+

√
B2 + C2

A−
√
B2 + C2

(9.59)

+ 2 ε

[
Li2

(
2
√
B2 + C2

A+
√
B2 + C2

+
1

4
ln2 A+

√
B2 + C2

A−
√
B2 + C2

)]
+ O(ε2)

}
.

For later use, we introduce a short-hand notation. The variable Y denotes the term
independent of ε, the parameter Z indicates the expression linear in ε. As we can
see, no divergence is caused by this integral.
The other two cases I

(1,1)
ε (xp2k xp4k) and I

(1,1)
ε (xp4k) fulfil the conditions a2 6= b2 and

A2 = B2 + C2. As we expect the occurrence of a double pole in our final solution,
we have to take into account all terms up to O(ε). However, as this is not given
in the usual literature, we take a similar integral of Ref. [235] and recalculated on
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permutation relations the needed case. Thus, we end up with

I(1,1)ε =
1

ε
X + Y + εZ

= π
1

aA− bB

{
−1

ε
+ ln

(aA− bB)2

(a2 − b2)A2
− ε

[
ln2

(
(a− b)A

Aa− bB

)
− 1

2
ln2

(
a+ b

a− b

)

+ 2Li2

(
b(B −A)

A(a− b)

)
− 2Li2

(−b(A +B)

Aa− bB

)]
+ O(ε2)

}
. (9.60)

Again, the parameter Y denotes the summand that is independent of ε, whereas
the summand Z is linearly dependent. The term which give rise to a divergence,
however, is indicated by X . Comparing now the coefficients A,B,C, a, b and their
indices l, m with the corresponding coefficients of the scalar products of Eq. (9.54)
we can make the following identifications:

First term I
(1,1)
ε (xp2k, xp4k):

a = 2E2√
s

A = 2E4√
s

=
s−m2

3

s

b = β1 B = β2 sin θ
l = 1 C = β2 cos θ

m = 1
a2 6= b2 A2 = B2 + C2

Second term I
(0,1)
ε (xp3k) :

A = 2E3√
s

=
s+m2

3

s

B = −β2 sin θ
C = −β2 cos θ
m = 1
A2 6= B2 + C2

Third term I
(1,1)
ε (xp4k) :

a = 1 A = 2E4√
s

=
s−m2

3

s

b = 0 B = β2 sin θ
l = 1 C = β2 cos θ

m = 1
a2 6= b2 A2 = B2 + C2

Finally, we end up with the following integrated expression:

(
dσ

dΓ2

)
= −

(
dσ

dΓ2

)

0

× g2sCA

16π3s

πε Γ(1 − ε)

Γ(1 − 2ε)

(
− 1

2ε

)(
µ2

δ2s

)ε

×
[
4(m2

2 − t)I(1,1)ε (xp2k xp4k) + 2(s−m2
3)I

(0,1)
ε (xp3k)

+ 2(s−m2
3)I

(1,1)
ε (xp4k)

]
. (9.61)
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Now all terms dependent on ε have to be expanded properly. They result from
the solid angle expression of Eq. (9.49), the integration of the gluon’s energy (cf.
Eq. (9.57)) and the angular integration (cf. Eq. (9.56) with Eqs. (9.59) and (9.60)).
Such we end up with the following relation

I ′(i,j)ε =

(
− 1

2ε

)(
µ2

δ2s

)ε
πε Γ(1 − ε)

Γ(1 − 2ε)

(
1

ε
X + Y + εZ

)
=

=
1

2

{
− 1

ε2
X +

1

ε

[
−Y +

(
− ln 4π + γE + ln

4δ2s
µ2

)
X

]

−Z +

(
− ln 4π + γE + ln

4δ2s
µ2

)
Y

+
1

4

[
π2 − 2(γE − ln π)2 − ln

δ2s
µ2

(
4γE + 2 ln

δs
π2µ2

)]
+ O(ε)

}
. (9.62)

Altogether, we arrive finally at the following expression in the soft limit

(
dσ

dΓ2

)
= −

(
dσ

dΓ2

)

0

× g2sCA

16π3s

[
4(m2

2 − t)I ′(1,1)ε (xp2k xp4k) + 2(s−m2
3)I

′(0,1)
ε (xp3k)

+ 2(s−m2
3)I

′(1,1)
ε (xp4k)

]
, (9.63)

which takes care for the arising soft and collinear divergences in the interference
terms of gluon emission off a final state gluon with the gluon emission off an initial
state squark or a final state quark, respectively. We can see that we get besides
single poles, also the expected double poles.

Fig. 9.7 shows schematically how the soft-collinear matrix elements of the virtual
and real contributions are connected. The above derived expression cancels the soft-
collinear divergences which arise in the box and vertex corrections containing two
internal gluons. The corresponding infrared divergent loop integrals are given addi-
tionally.

Hard and collinear. In the next step, we discuss the treatment of the processes
which give rise to single poles in the hard and collinear limit (ω > δs ∧ 0 ≦ s45 ≦ δc).
This is the case for all squared matrix elements containing gluon emission off a gluon
as well as for the matrix element involving the final state gluon splitting into two
massless quarks.
In the collinear limit, the leading pole approximation is valid and we can factorize
again the relevant 2 → 3 processes as a product of the tree-level and a factor
containing the single poles with logarithms of δs and δc. Terms of order δsδc can be
neglected. To find the necessary expressions for the occurring processes we follow
closely the procedure of Ref. [228].
Fig. 9.8 shows an example process of a gluon that is emitted of the final state gluon.
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Figure 9.7: Correspondence of real (left) and virtual (right) soft-collinear diagrams. These
processes arise only for a gluon in the final state. In the left column the oc-
curring colour factor is indicated, in the right column also the corresponding
infrared divergent loop integrals are given.
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p4′
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Figure 9.8: Naming convention of momenta and mandelstam variables for the derivation
of the collinear approximation. The example diagram shows the radiation of a
gluon off the final state gluon, which give rise to a collinear divergence.

It defines the naming convention of the momenta for the derivation of the hard
and collinear approximation. In the collinear limit ~k2t ≪ (zk)2, we can express the
outgoing momenta k4 and k5 in terms of their effective momentum k45 = k4 + k5 +
O(k2t ) in the following way

k45 = (k, 0, 0, k) (9.64)

k4 ≃
(
zk +

k2t
2zk

,~kt, zk

)
(9.65)

k5 ≃
(

(1 − z)k +
k2t

2(1 − z)k
,−~kt, (1 − z)k

)
, (9.66)

where ~kt indicates the transverse component of particle 4, and −~kt for particle 5
in the centre-of-mass system. Hereby z denotes the momentum fraction of particle
k4 with respect to the merged D-momentum k45, and (1 − z) the complementary
fraction of particle k5 in the direction of the z-axis. Their corresponding energies
result from a Taylor series in k2t .
In the collinear limit, the relation k45 = k4 + k5 is valid, such that we can
write dD−1k45 = dD−1k4 assuming a fixed k5. Thus, the 3-body phase space in
D-dimensions can be written as

dΓ3

∣∣
coll

=

[
dD−1p3

(2π)D−12E3

dD−1k45
(2π)D−12E45

(2π)Dδ(D)(p1 + p2 − p3 − p45)

]
dD−1k5

(2π)D−12E5

E45

E4
,

(9.67)

where we have used a trick, and expanded the relation with E45/E45. This allows us
to factorize the 3-body phase space differential into a 2-body phase space differential
and a factor carrying the integration over the gluon or light quark momentum that
give rise to an infrared divergence. With the short-hand notation for the 2-body
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phase space dΓ2, we obtain the short expression

dΓ3

∣∣
coll

= dΓ2
dD−1k5

(2π)D−12E5

E45

E4
. (9.68)

With the momenta definition of Eq. (9.66) we obtain the mandelstam variable s45
as follows

s45 = 2k4 · k5 ≃
k2t

z(1 − z)
. (9.69)

In order to rewrite the integration over the D-momentum k5 we make use of the
relation dk2t = z(1 − z)ds45 and dD−2k5 = dk5k

D−3
5 dΩD−3 such that we arrive at

dΓ3

∣∣
coll

= dΓ2
dD−1k5

(2π)D−12E5

E45

E4
= dΓ2

(4π)εΓ(1 − ε)

16π2Γ(1 − 2ε)

dz ds45
[s45z(1 − z)]ε

, (9.70)

where we have used dΩD−3 = 2π1−ε

Γ(1−ε)
.

After having achieved to reformulate the 3-body phase space integration such that
it factorizes in the 2-body integration, the similar has to be obtained for the squared
matrix elements. This is accomplished by imposing collinear kinematics to the ex-
pressions of the squared 2 → 3 matrix elements which are proportional to the leading
collinear singularity. This method is called collinear or leading pole approximation.
Due to the factorization theorem the squared matrix element can then be basically
written in terms of a leading order squared matrix element and an appropriate split-
ting kernel [236–239]. Finally, the squared 2 → 3 matrix elements can be written in
the collinear limit as

∑
|M1+2→3+4+5|2 ≃

∑
|M1+2→3+4′ |2P44′(z, ε)g

2
sµ

2ε 2

s45
, (9.71)

where Pi,j(z, ε) denotes the unregulated (z < 1) splitting functions in D-dimensions
based on the usual Altarelli-Parisi splitting kernels [240]. These splitting functions
account for the probability that particle i is separated off a particle j.
Thus, the differential cross section can be written in the collinear limit (E4,5 >
δs ∧ 0 ≦ s45 ≦ δc) as follows

(
dσ

dΓ2

)
=

(
dσ

dΓ2

)

0

× g2s(4πµ
2)ε Γ(1 − ε)

8π2Γ(1 − 2ε)

∫ δc

0

ds45

sε+1
45

∫
dz

P44′(z, ε)

(z(1 − z))ε
, (9.72)

where we have considered Eq. (9.70) and Eq. (9.71). As the calculation has to be per-
formed in dimensional regularization, we need the corresponding splitting functions
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in D-dimensions. Due to the relation

Pij(z, ε) = Pij(z) + εP ′
ij(z), (9.73)

the unregulated D-dimensional splitting functions can be written in terms of the
usual splitting kernels in four dimensions. The relevant Altarelli-Parisi splitting func-
tions can be found in dedicated literature, for instance in Refs. [228, 240]. For the
cases studied in this work, we have to account for gluon emission off a gluon and
the splitting of a light quark off a gluon. Therefore we need the following splitting
kernels

Pgg(z)=2N

[
z

1 − z
+

1 + z

z
+ z(1 − z)

]
P ′
gg(z) = 0 (9.74)

Pqg(z)=
1

2

[
z2 + (1 − z)2

]
P ′
qg(z) = − z(1 − z), (9.75)

with N = 3 and CF = 4/3.
However, until now we have not considered the integration bounds for the integral
over the splitting kernels. As no soft divergence appear in case of the real emission
diagram containing a g → qq splitting, the corresponding diagrams are hard over
the whole phase space. Therefore, the splitting functions are integrated over the full
region of 0 ≤ z ≤ 1.
This is in contrast to the case of a diagram involving a g → gg splitting. Here, also
soft divergences can occur such that one has to ensure that both external gluons
have to fulfil the hard condition

δs ≤ E4,5 ≤
√
s12
2

. (9.76)

In the rest frame of p1 and p2 the energy conservation relation (p1 +p2)
2−2k5 · (p1 +

p2) = (p3 + p4)
2 can be reformulated to s12 − 2E5

√
s12 = s34 such that the energies

E4 and E5 can be expressed as

E5 =
s12 − s34

2
√
s12

and E4 =
s12 − s35

2
√
s12

, (9.77)

where similar follows for particle 4. Putting Eq. (9.77) in the hard condition of
Eq. (9.76) and assuming the approximations

s12 = (p3 + k45)
2 ≃ m2

3 + 2p3 · k45
s34 = (p3 + k4)

2 = m2
3 + 2p3 · k4 ≃ m2

3 + z(2p3 · k45) ≃ m2
3 + z(s12 −m2

3)

s35 = (p3 + k5)
2 = m2

3 + 2p3 · k5 ≃ m2
3 + (1 − z)(2p3 · k45) ≃ m2

3 + (1 − z)(s12 −m2
3)

(9.78)

156



9 Real Corrections

the final integrations bounds are obtained

2δs
√
s12 − m2

3√
s12

≤ z ≤ 1 − 2δs
√
s12 − m2

3√
s12

. (9.79)

Now we can expand all remaining factors of Eq. (9.72) that dependent on ε, and
identify the collinear divergence

∫ δc

0

ds45

sε+1
45

=

(
−1

ε

)
δ−ε
c . (9.80)

When now the integration is performed according to the bounds which we have
derived above, we obtain the final expression for the differential cross section in the
collinear limit

(
dσ

dΓ2

)
=

(
dσ

dΓ2

)

0

× g2s
8π2

[(
1

ε
+ ln 4π − γE + lnµ2

)(
Ag→gg

ε + Ag→qq
ε

)

+
(
Ag→gg

0 + Ag→qq
0

) ]
. (9.81)

The parameters Ai→jk
ε,0 result from the integration over the splitting functions and

are given by

Ag→gg
ε = N

[
11

6
+ ln 4δ2s − 2 ln(

√
s12 −

m2
3√
s12

)

]
(9.82)

Ag→gg
0 = N

[
67

18
− π2

3
−
(

ln 2δs − ln(
√
s12 −

m2
3√
s12

)

)2

− ln δc

(
11

6
+ ln 4δ2s − 2 ln(

√
s12 −

m2
3√
s12

)

)]
(9.83)

Ag→qq
ε = −nf

3
(9.84)

Ag→qq
0 =

nf

3

[
ln δc −

5

3

]
, (9.85)

where N = 3 and nf indicates the number of flavours. In our considered case we
take nf = 4, to cancel exactly the divergence which arise from the gluon self energy
containing the four light quarks.

In Fig. 9.9 we show the corresponding matrix elements which cancel each other in
the hard-collinear limit. The squared amplitude where a gluon is emitted off a gluon,
cancels the divergent contributions, which arise due to a gluon and a ghost loop
within the gluon wave function renormalization constant. The squared amplitude
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Figure 9.9: Correspondence of real (left) and virtual (right) hard-collinear diagrams. These
processes arise only for a gluon in the final state. In the left column the occur-
ring colour factor is indicated, in the right column the corresponding infrared
divergent loop integrals are also given.

of emitted nf light squarks is cancelled by the light quark loop of the gluon wave
function renormalization constant.

9.3.3 Processes with a Photon in the Final State
Additional Soft Divergence

So far we have only addressed cases, where the infrared divergences were caused by
the radiating gluon. However, in case of real emission of a gluon off a process with
a photon in the final state χ̃0

1t̃ → tγg, also the photon can become soft in certain
regions of phase space. As this would lead to numerical instabilities, we have to
carefully treat the possibility of such a soft photon. Thus, we introduce similar to
the treatment of a soft gluon (see Sec. 9.3.1) another cutoff and subtract the soft
parts. We can formulate the soft photon expression similar to the terms we have
already derived

(
dσ

dΓ2

)
= −

(
dσ

dΓ2

)

0

× e2 q2

16π3

[
I ′p22

(δs) + I ′p23
(δs) − 2I ′p2p3(δs)

]
, (9.86)
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where e denotes the electric charge and q the charge of interacting particle. In our
studied case a photon that can become soft is radiated off a stop or a top such that
we have q = 2/3. The integrals I ′ab are given in Eqs. (9.36) and (9.37).
As we address in our work only corrections of O(αs), the artificially introduced
cutoff dependence cannot vanish. For a cutoff independent formulation one would
have to take into account also elctroweak corrections, which is beyond the scope of
this work. As the photon final state in general contributes marginally to the total
coannihilation cross section in the studied scenarios (cf. Sec. 6.3), the error caused
due to this kind of treatment is negligible.

9.3.4 Alternative Approach: Subtraction Methods

Besides phase space slicing, another well established approach to treat infrared di-
vergences exists in literature: the so-called subtraction method. In contrast to phase
space slicing, the subtraction method does not depend on any cutoff parameters, but
introduces similar to the ansatz of the UV-treatment a kind of counterterm. An often
used approach is the Catani-Seymour dipole subtraction method, see e.g. Refs. [241,
242]. When applying this method, one can write the full finite cross section as follows

σNLO =

∫

m+1

[(
dσR

)
ε=0

−
(
dσA

)
ε=0

]
+

∫

m

[
dσV +

∫

1

dσA

]

ε=0

, (9.87)

where dσR indicates the partial cross section arising from the real contributions in
2 → 3 phase space, and dσV denotes the virtual contributions in 2 → 2 phase
space. In order to regularize the arising infrared divergences, an auxiliary partial
cross section dσA is introduced. It is a local counterterm of dσR in D dimensions
and cancels pointwise its singular behaviour. Hereby, the auxiliary term dσA has to
be chosen in such a way that at the same time also an analytical integration over
the one-particle phase space in D dimensions is possible. This ensures that this term
also cancels locally the infrared divergences arising from the virtual corrections and
makes an integration in D = 4 possible.
For deriving the local counterterm dσA a special factorization formula is used, which
is called dipole factorization, and gives this method its name. In a symbolic notation
it can be written as

dσA =
∑

dipoles

dσB ⊗ dVdipole, (9.88)

where dσB indicates a process dependent term which implies spin and color informa-
tion. The expression dVdipole, however, is the process independent dipole factor which
takes care for the infrared behaviour and can be calculated generally for generic cases.
Both is summed in spin and color and convoluted over the phase space, which is
denoted by the symbol ⊗.
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Whereas first only massless initial and final state particles have been considered for
deriving the dipoles [241, 242], it has been extended to the case of massive particles
and also to some specific configurations of supersymmetric particles in the initial or
final state [243–245].
In a follow-up work, we plan to treat the infrared divergences also by using the
Catani-Seymour approach. However, because of expected analytical subtleties we
have focused first on the phase space slicing method. Having implemented both in
the DM@NLO code, this will offer us an interesting possibility to compare the capability
of both, the dipole subtraction method and the phase space slicing procedure. More-
over, it provides an additional powerful possibility of cross-checking. Considering
previous comparisons of both approaches, for instance those performed in Ref. [246],
we expect a more efficient and accurate behaviour when using the dipole subtraction
method.
For completeness also other subtraction methods should be mentioned. Frequently
used methods are for example the so-called antenna subtraction (see e.g. Refs. [247–
249]), which uses a generalization of the Catani-Seymour dipole functions, or the
Frixione-Kunszt-Signer subtraction (FKS) (see e.g. Refs. [238, 250]).

9.4 Intermediate On-shell States

Another subtlety can appear when calculating real emission contributions. In two of
the real radiation diagrams of Fig. 9.2 and Fig. 9.3 intermediate on-shell states can
occur. Fig. 9.10 shows the relevant cases.
When a gluon is radiated off an initial state stop (left diagram) or the propagating
top quark (right diagram) in the s-channel diagram of the Wb final state, the internal
top propagator can become on-shell. This leads to an extra unphysical enhancement
of these processes. With mt > mb +mW , such an enhancement can arise as soon as√
s > mt is fulfilled and the radiating gluon carries enough energy.

When considering Fig. 9.10, one can see that these states can also be understood

χ1
0˜

t1
˜

b

W

g

t1
˜

t χ1
0˜

t1
˜

b

W

g

t

t

Figure 9.10: Real gluon emission off the initial state squark (left) or the propagating quark
(right) with a W+b final state. In these two cases the internal top propagator
can become on-shell, as indicated by a double line.

.

as the corresponding tree level process χ̃0
1t̃1 → tg, where the top decays further

t→ bW+. However, the corresponding tree level process has been already accounted

160



9 Real Corrections

for in the calculation of the leading order processes. Considering that this process
can arise from these two different sources, the LO process which decays further and
the NLO contribution with an on-shell top, this would result in double counting.
As for the intermediate on-shell states huge cross sections are expected for the real
emission contributions, also the prediction of the neutralino relic density would be
distorted, such that we cannot neglect this problem and have to treat it carefully.
Different approaches exist in literature to treat this problem. One possible method
is a kind of slicing method, where the phase space region in which the top could
become on-shell is cut away [251]. Requiring |MbW+ −mt| > δ ΓT with MbW+ being
the invariant mass of the bottom quark and the W-boson, ΓT the width of the top
quark and δ a regulator, the relevant phase space where the top can become on-
shell, is excluded. However, this approach is not independent of the chosen cutoff
and also interference terms with diagrams without any intermediate on-shell states
are neglected.
A second approach is the diagram removal (DR-I) scheme [252]. If one distinguishes
the matrix elements between these contributions which can become resonant Mres

and those which are non-resonant (remnant) Mrem, the full matrix element can be
written as

|M|2 = |Mres|2 + 2Re(M∗
resMrem) + |Mrem|2. (9.89)

In the diagram removal method the resonant matrix element Mres is set to zero. This
means that also interference terms with non-resonant contributions are neglected. As
these terms can become sizeable, this can cause uncertainties and is thus a disad-
vantage of this method.
Therefore a second kind of diagram removal (DR-II) has been introduced, where only
the squared resonant matrix element |Mres|2 is set to zero. In this case interference
terms are retained [253]. Both diagram removal methods have in common that they
break gauge invariance and lead thus to arbitrary results, as it is not guaranteed
that the neglected contributions are small [254].
Another possibility is the so-called local on-shell subtraction (DS), which retains
gauge invariance and keeps also the interference terms of resonant and non-resonant
contributions. As firstly introduced in Ref. [255], it is also called the PROSPINO-
approach and is quite frequently used until today (cf. Refs. [254–257]). Due to its
obvious advantages we apply it also in our case.
Within this approach, the problematic propagator is regularized by substituting for
a Breit-Wigner propagator in the amplitudes of the two resonant diagrams

1

p2 −m2
−→ 1

p2 −m2 + imΓ
(9.90)

with a finite width Γ. However, the width has not to be the physical width of the
propagator particle. It is sufficient to introduce a small mathematical regulator to
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stabilize the integration as the calculation will not depend on it.
In order to solve the problem regarding double counting, a kind of counterterm
(|Msub

res|2) is introduced.

|M|2 = |Mres|2 − |Msub
res|2 + 2Re(M∗

resMrem) + |Mrem|2. (9.91)

This counterterm is defined as

|Msub
res|2 =

m2
tΓ

2
t

(p2t −m2
t )

2 +m2
tΓ

2
t

|Mres|2p2t=m2
t
. (9.92)

The 2 → 3-matrix element, which is set exactly on-shell, is multiplied with a Breit-
Wigner distribution, with the momentum pt not being fixed on-shell. When the
top-quark gets on-shell, the subtraction term is equal to the full 2 → 3 matrix
element, while it decreases as a Breit-Wigner distribution when the top moves away
from its pole.
Thus we managed to remove locally the resonant terms, but retain at the same time
possible interference terms, which can give rise to significant contributions.
We have checked that the total cross section after subtraction is independent of the
top width.
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10 Impact of the One-Loop Corrections

Having implemented the full one-loop calculation in the DM@NLO code, a precise
analysis of the impact of these corrections on the cross section and the neutralino
relic density is possible. To do so, we study the effect of the corrections based on
the scenarios introduced in Sec. 6.3. As they feature different dominant final states,
it allows us to discuss several interesting aspects of the phenomenology.
In the following, the main focus lies on the discussion of the corrections involving
a Higgs boson, additionally, key features of the electroweak vector bosons are ad-
dressed.1

10.1 Impact on the Total Cross Section

Before discussing the effect of the supersymmetric QCD corrections on the neutralino
relic density, we investigate the direct impact of the one-loop calculation on the total
coannihilation cross section.
To get an idea of the interplay of the different calculated loop corrections, Fig. 10.1
shows a break down of the total next-to-leading order correction (without the tree-
level) into individual UV-finite contributions. This overview is shown for the two
processes χ̃0

1t̃1 → th0 (Scenario I) and χ̃0
1t̃1 → tZ0 (Scenario II). The contributions

arising from the virtual part of the calculation including propagators, vertices and
boxes, as well as the real contribution is depicted. Although each individual contribu-
tion is UV-finite due to the renormalization procedure, the vertex, box and the real
part still contain IR-divergent expressions. This leads to a certain ambiguity in their
exact definition. Each contribution contains an uncancelled pole together with an
uncancelled logarithm of the large factorization scale. Within the calculation these
relics of the infrared treatment are absorbed by the real part, which consists of the
soft part calculated by using the eikonal approximation and the hard radiation. Due
to the large logarithms, the box contribution gets artificially large and leads to a
negative correction of the real emission part in order to ensure a complete absorp-
tion. Therefore, no quantitative statement on these corrections is possible. However,
we are able to make a qualitative comparison between the corrections of both final
states depicted in Fig. 10.1.
For the Higgs final state, the contributions of the propagator and the box is enhanced

1As a last numerical cross-check regarding the soft-collinear contributing diagrams of the gluon
final state could not been finalized until the thesis was to be finished, we take into account only
the Higgs and electroweak vector bosons for the subsequent study.
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Figure 10.1: Absolute contribution of the different corrections to the total next-to-leading
order correction for the case of coannihilation into th0 (Scenario I) and into
tZ0 (Scenario II). The tree-level contribution is not contained in σNLO. The
grey area indicates the thermal distribution (in arbitrary units).

in contrast to the Z-boson final state. This is caused by the significant contribution
of the t-channel exchange in case of a Higgs boson in the final state, which driven
by the large trilinear coupling. The t-channel diagram receives a correction to the
stop propagator and the box diagram where a gluon is exchanged between the final
state quark and the initial state squark. This leads to enhanced box and propagator
corrections, and lead to a large overall NLO correction in the case of coannihilation
with a Higgs boson in the final state.
After studying the individual contributions of the one-loop corrected result, we focus
now on the quantitative correction to the cross section. To this end, Fig. 10.2 shows
for different final states of each scenario the impact of the full next-to-leading order
calculation. The total cross section is depicted in dependence of the center-of-mass
momentum for the effective tree-level computation of MicrOMEGAs (orange solid line),
the tree-level calculation as implemented in DM@NLO (black dashed line), and the full
one-loop result (blue solid line). The grey shape, which gives the thermal distribu-
tion in arbitrary units according to Eq. (4.28), allows one to estimate the range of
center-of-mass momentum which is relevant for the relic density calculation. The
lower panel of each plot depicts the ratio of the aforementioned cross sections.
The upper left subfigure of Fig. 10.2 shows the results for the process χ̃0

1t̃1 → th0

of Scenario I. We clearly see that both tree-level computations, the one performed
by MicrOMEGAs and the one computed by our DM@NLO implementation are in per-
fect agreement. Furthermore, the full one-loop contribution is depicted. Through
the SUSY-QCD corrections the cross section is enhanced by about 30 %. This is
caused by the large contribution from the box diagrams and propagator corrections
as discussed before.

164



10 Impact of the One-Loop Corrections

1.0

2.0

3.0


� 
(�
�−

�  
��

�−
� )

��� (�
 /���)
�
   (	�
 /�
)
	�
  (	�
 /���)

0 100 200 300 400
��� (GeV)

0.7

1.0

1.3

re
l.
co

rr

̃
�
� ̃�� →���  (Scenario I)

1.0

2.0

3.0

4.0


� 
(�
�−

�  
��

�−
� )

��� (�
 /���)
�
   (	�
 /�
)
	�
  (	�
 /���)

0 100 200 300 400 500
��� (GeV)

0.8

1.0

1.2

re
l.
co

rr

̃
�
� ̃�� →�� � (Scenario III)

0.5

1.0

1.5

2.0


� 
(�
�−

�  
��

�−
� )

��� (�
 /���)
�
   (	�
 /�
)
	�
  (	�
 /���)

0 100 200 300 400 500
��� (GeV)

0.8

1.0

1.2

re
l.
co

rr

̃
�
� ̃�� →�� � (Scenario II)

1.0

3.0

5.0

7.0


� 
(�
�−

��
 �
��

−�
) ��� (	� /���)

	�   (
�� /	�)

��  (
�� /���)

0 100 200 300 400 500
��� (GeV)

0.8

1.0

1.2

re
l.
co

rr

̃
�
� ̃�� →��+  (Scenario II)

Figure 10.2: Tree-level (black dashed line), full one-loop (blue solid line) and MicrOMEGAs

(orange solid line) cross sections for selected coannihilation channels of the
scenarios of Tab. 6.2. The upper part of each plot shows the absolute value of
σv and the thermal distribution (grey, in arbitrary units), whereas the lower
part shows the corresponding relative shifts (second item in the legend).
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Similar behaviour is observed for Scenario III, where the final state with a heavy
Higgs boson H0 plays an important role. The same explanation as for the lightest
Higgs final state accounts here. For this case, the one-loop cross section lies about
18 – 20 % above the tree-level contribution. Both tree-level calculations, the one im-
plemented in DM@NLO and the one of MicrOMEGAs are again in very good agreement
to each other.
Those observations are in contrast to the results shown for the processes χ̃0

1t̃1 → tZ0

and χ̃0
1t̃1 → bW± of Scenario II. In these scenarios, a significant shift of about 10 %

between the two tree-level calculations is visible. However, this behaviour is well
understood, and arises due to our choice of the renormalization scheme. It is caused
by the different definition of the squark mixing angels, which enter the calculation
through different interactions between squarks and quarks. The processes containing
a Higgs in the final state are dominated by the t-channel diagram. In this diagram
two of these interactions appear. The mixing angle θt̃ enters the neutralino-squark-
quark vertex as well as the squark-squark-Higgs coupling. As the internal propagator
has to be summed over the two possible squark mass eigenstates, t̃1 and t̃2, the result
gets less sensitive to the exact value of the mixing angle. This is in contrast to the
diagram with a Z0-boson in the final state, where the s-channel dominates the cross
section. In this case, only the neutralino-squark-quark vertex contains an interaction
between squarks and quarks, and the squark eigenstate is fixed due to the initial
state quark. Therefore, the processes with an electroweak vector boson in the final
state are much more sensitive than the diagrams containing a Higgs boson.
We have checked this behaviour numerically and are able to recover the original
MicrOMEGAs tree-level value by changing our definition of the mixing angels. An
additional flag is implemented for changing between these two definitions, which
enables an easy comparison of the tree-level cross section calculated by MicrOMEGAs

and DM@NLO.

10.2 Impact on the Neutralino Relic Density

After having discussed the impact of the calculated one-loop corrections on the cross
section for specific processes, we concentrate now on their impact on the neutralino
relic density. As the three different scenarios, introduced in Sec. 6.3, feature different
dominant and subdominant final states, we are able to investigate the interplay of
their individual one-loop corrections.

First, we discuss the change of the relic density ΩCDM h
2 when a single input pa-

rameter is varied. In Fig. 10.3 this is studied for Scenario I by varying the bino
mass parameter M1 (left panel), and the trilinear coupling Tt (right panel), respec-
tively. Again, the same colour code is used as in the previous figures: The default
MicrOMEGAs tree level is depicted as an orange solid line, the DM@NLO tree level
as a black dashed line, and our full one-loop corrected result as blue solid line. A
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Figure 10.3: The neutralino relic density ΩCDMh2 as a function of M1 (left) and Tt (right)
calculated by using different coannihilation cross sections: default MicrOMEGAs
(orange solid line), and DM@NLO tree level (black dashed line), as well as the
full one loop (blue solid line). The grey band indicates the PLANCK favoured
range of the relic density according to Eq. (3.12). The lower part shows the
relative impact of the one-loop correction on the relic density compared to
the tree-level calculation.

grey band shows the PLANCK favoured range of the neutralino relic density (cf.
Eq. (3.12)).
The left subfigure shows that the relic density is highly sensitive to variations in the
bino mass parameter. This is due to reasons which have been already discussed in
Sec. 6.1. By tuning M1 to higher values, the mass gap between the lightest neutralino
and the stop becomes smaller and thus stop-stop annihilation is enhanced. Due to
the large cross section of stop-stop annihilation, this leads to a significant smaller
value for the relic density, which is not any longer in agreement with the range
favoured by PLANCK. However, when the value of M1 decreases, the mass gap gets
enlarged. Thus, neutralino-stop coannihilation and stop-stop annihilation gets much
less important in favour of neutralino-neutralino annihilation. As the latter features
a quite small cross section, the predicted relic density becomes quickly too large.
The left subfigure of Fig. 10.3 allows us also to make a quantitative comparison
of the differently calculated relic density predictions. Our tree level result is very
well in agreement with the relic density computed by MicrOMEGAs. However, within
the PLANCK favoured range a significant shift is visible between the relic density
calculated by default MicrOMEGAs and the one computed by using our full next-to-
leading order correction.
In the lower part of the plot, the ratios of the differently evaluated relic density are
depicted. In blue the ratio of the full NLO calculation and the tree-level calculation
is shown. The SUSY-QCD corrections result in a relative correction of around 9 %
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to the relic density evaluated on the basis of the tree level cross section. For Scenario
I, this can be explained due to the dominance of the lightest Higgs in the final state,
which contributes around 38.5 % (cf. Tab. 6.3) to the total (co)annihilation cross
section with a corresponding correction of around 30% (cf. Fig. 10.2).
A similar plot is given in the right subfigure of Fig. 10.3. Here, the trilinear coupling
parameter is slightly varied around the input value of Scenario I, Tt = 1806.5 GeV.
Higher values for Tt enlarge the stop mass splitting, which results in a smaller mass
gap for a fixed neutralino mass and thus leads to enhanced stop-stop annihilation.
Smaller values for Tt reduce the mass splitting such that neutralino annihilation is
dominant. The observed shift of the predicted relic density corresponds roughly to
a shift of 3 GeV in the trilinear coupling parameter.

For an even better estimate of the impact of the loop corrections, a closer look
to the parameter space is interesting. Therefore, we performed for each scenario
2-dimensional scans in dependence of the third generation squark mass parameter
Mq̃3 and the bino mass parameter M1 (left column) as well as in dependence of
the trilinear coupling parameter Tt and the bino parameter M1 (right column). The
corresponding plots are depicted in Fig. 10.4.
In all subfigures the PLANCK-favoured region of parameter space within an 1σ inter-
val is marked as a band. In orange we show the cosmologically favoured region based
on the default MicrOMEGAs calculation, in blue based on our full one-loop calcula-
tion. A clear separation of the two bands is visible for all scenarios, which indicates
that the resulting corrections are larger than the current experimental uncertainties.
Therefore, they have to be considered in order to obtain realistic estimations on the
cosmologically favoured region of parameter space.
First, we concentrate on the plots of Fig. 10.4 with respect to Scenario I. For this
scenario, the separation of the two relic density bands is most significant. This is
due to the clear dominance of the process with the lightest Higgs in the final state
which contributes with 38.5 % to the total cross section. As already discussed be-
fore, it achieves corrections up to 9 % and thus leads to a significant shift of the
cosmologically favoured region of parameter space. In black lines the relative impact
of the one-loop corrections for the whole (Mq̃3,M1) plane is shown. With greater
distance from the relic density bands, also the impact of the studied corrections
decrease. This is due to less contribution of neutralino-stop processes to the total
cross section, which are the only processes we correct within this analysis.
It also attracts attention that the PLANCK-favoured band follows a straight line in
the (M1,Mq̃3) plane, which corresponds to a constant mass difference between the
lightest neutralino and the lightest stop of about 40 GeV. Above the cosmologically
allowed band the neutralino becomes heavier and the mass difference decreases. As
a consequence, stop-stop annihilation becomes dominant. As stop-stop annihilation
has typically a significantly higher cross section than the coannihilation processes,
this leads to a too small neutralino relic density. For large values of M1 (grey area in
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Figure 10.4: PLANCK-compatible relic density bands from default MicrOMEGAs calcula-
tion (orange) and our one-loop calculation for coannihilation (blue) in the
(Mq̃3 ,M1) (left) and (Tt,M1) (right) planes. In the plots on the left hand side
the relative contribution of coannihilation processes is shown in green con-
tour, and the relative impact of the one-loop corrections on the relic density
in black lines. The plots on the right hand side show the LSP-NLSP mass
difference in green contour.
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10 Impact of the One-Loop Corrections

the upper left corner) the stop becomes the lightest supersymmetric particle. This
particle, however, is disfavoured as dark matter candidate because it carries electric
and colour charge. Below the cosmologically allowed band, the mass difference gets
larger and thus the neutralino-stop and stop-stop (co)annihilation becomes more
and more Boltzmann suppressed. The neutralino annihilation, which has a lower
cross section, becomes now dominant, which results in a too large relic density. The
relative contribution of neutralino-stop coannihilation is depicted in shades of green.
On the right hand side of Fig. 10.4, the (Tt,M1) plane is shown. Again, a clear sepa-
ration of the two relic density bands is visible, together with a moderate dependence
on the trilinear coupling parameter Tt (see discussion of Fig. 10.3). In different green
colours the mass difference between the lightest and next-to-lightest supersymmetric
particle is depicted. It confirms the statement that the PLANCK-favoured region
follows a line of a constant mass difference of around 40 − 45 GeV.
We can conclude that the impact of the studied one-loop corrections on the dark mat-
ter relic density is larger than the current experimental uncertainties by PLANCK.
In the second row we show the similar 2-dimensional plots for Scenario II, in which in
particular two processes dominate the cross section, namely the t h0 final state with
24.6 % and the t Z0 final state with 10.7 %. Whereas the Higgs final state receives
large corrections, the correction to the process involving a Z-boson is quite small
(cf. Fig. 10.2). Combining both processes, the correction of the total cross section
is not as large as for Scenario I. This is due to a smaller contribution of the Higgs
final state, and the much smaller correction of the t Z0 final state (in comparison to
MicrOMEGAs the correction of the t Z0 final state even differs in sign with respect to
the corrections obtained for the other final states). Therefore, the loop corrections
for Scenario II result only in a correction of about 5− 6 %. The PLANCK favoured
relic density bands obtained by using the default MicrOMEGAs (orange) and our full
one-loop corrections (blue) are not as significantly separated as for Scenario I.
Another interesting feature of Scenario II is visible in the left subfigure. For this sce-
nario, the preferred PLANCK region lies outside the area of maximal contribution
of neutralino-stop coannihilation. This effect arises from the importance of the coan-
nihilation process involving a Z-boson. With the process χ̃0

1t̃1 → t Z0 featuring a
lower cross section, neutralino-stop coannihilation is not sufficient any more in order
to achieve a total (co)annihilation cross section that results in a relic density which
is in agreement with the PLANCK measurements. Thus, in this parameter region,
stop-stop annihilation is needed to obtain the right value for the dark matter relic
density. It is striking for Scenario II that coannihilation dominates for a comparable
large mass difference between the stop and the lightest neutralino of about 70 GeV.
However, this can be explained by having a closer look at Tab. 6.2. In comparison
to the two other scenarios, the masses of the lightest neutralino and stop are much
heavier. As the freeze-out temperature is proportional to the mass of the dark mat-
ter particle TF = mχxF with xF ≈ 27, an increased neutralino mass leads also to
an increased freeze-out temperature. This results in weaker Boltzmann suppression
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in this scenario (cf. 4.21) such that the same suppression which is achieved for a
mass difference of 40 − 45 GeV in Scenario I, is obtained for a larger mass splitting
of 70 GeV in Scenario II. Thus, neutralino-stop coannihilation is also possible for
larger mass differences between the LSP and NLSP.
Finally, we study further the phenomenology of Scenario III, where the light CP-even
Higgs boson dominates the neutralino-stop coannihilation with 20.7 %, followed by
the process involving the lightest neutral Higgs boson with 14.2 %. As depicted in
Fig. 10.2, the correction on neutralino-stop coannihilation with a CP-even Higgs
boson in the final state accounts for 20 % to the cross section. This is not as large
as for the process with the lightest neutral Higgs boson in the final state. Thus, the
effect on the relic density is consequently smaller than for Scenario I. Nevertheless,
an overall impact of 5 − 6 % to the relic density is reached. This leads also in this
scenario to a separation of the PLANCK favoured relic density band calculated by
micrOMEGAs and the one calculated with the full one-loop SUSY-QCD corrections.
Although the mass difference between the LSP and NLSP seems to be quite large
with 55 GeV in this scenario, this is in perfect agreement with the other scenarios. As
discussed above, the important key parameter is the value of ∆M = (mt̃1−mχ̃1

)/mχ̃1

(see discussion in Sec.6.1), which is with ∆M = 0.18 in a similar ball park as Scenario
I with ∆M = 0.14, for instance.

Conclusions. We have studied the impact of the supersymmetric QCD corrections
on the (co)annihilation cross section as well as on the neutralino relic density. A
clear separation of the cosmologically preferred region by PLANCK is visible. Thus,
the one-loop corrections exceed the experimental uncertainties and are important
to be taken into account in order to obtain a realistic estimation on the favoured
regions of parameter space.
As the corrections will be publicly available within the package DM@NLO, it can be
used in order to improve studies of parameter space and global fits.
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Although the Standard Model of particle physics has demonstrated its success dur-
ing the last decades, it has several shortcomings. For instance, it does not provide
a particle which can account for the main component of dark matter. Therefore,
we have discussed several dark matter candidates which could extend the Standard
Model of particle physics. One example on which we have focused in this thesis is
the MSSM with conserved R-parity. It provides naturally a good cold dark matter
candidate, the lightest neutralino.
Due to measurements of the cosmic microwave background by WMAP and the
Planck satellite, the value of the dark matter relic density is very precisely deter-
mined. We have studied in detail the derivation of the relic density calculation.
One significant quantity which enters directly the theoretical prediction of the relic
density is the cross section of annihilation and coannihilation processes. Besides
neutralino pair annihilation, also coannihilation of the neutralino and the next-to-
lightest supersymmetric particle can contribute significantly, when both particles are
almost mass degenerate.
Based on an example scenario we have intensively studied the interplay between
neutralino-pair annihilation, neutralino-stop coannihilation and stop-stop annihila-
tion with respect to their impact on the relic density. We have demonstrated that
besides neutralino-neutralino annihilation, neutralino-stop coannihilation is one im-
portant process in order to not overclose the universe. Thus, it should not be ne-
glected for a precise computation of the relic density. Moreover, it has been shown
that also in the context of the discovery of a 125 GeV Higgs boson neutralino-stop
coannihilation is phenomenologically very well motivated.
In order to study the phenomenology of neutralino-stop coannihilation further, we
have performed an extensive parameter study. We have been able to show that
neutralino-stop coannihilation contributes significantly to the total coannihilation
cross section, especially regarding the process with a lightest Higgs boson in the
final state. Due to the demonstrated phenomenological importance we have per-
formed the full supersymmetric next-to-leading order QCD corrections to neutralino-
squark coannihilation. We have presented details of our calculation, and described
our DR/on-shell renormalization scheme. It has been chosen in order to ensure a stable
calculation for wide regions of parameter space, also with respect to neutralino-pair
annihilation. Further, we have discussed the treatment of the occurring infrared di-
vergences. We have shown in detail the performed phase space slicing method, which
has been used to isolate soft and collinear divergences. We have derived the neces-
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sary terms for the cancellation of soft divergences in case of massive final states and
have introduced the two-cutoff approach for a gluon in the final state. Further, we
have pointed out the special treatment of intermediate on-shell states in case of a
W± in the final state.
Taking everything together we have arrived at a fully convergent SUSY-QCD next-
to-leading order calculation1. Based on three example scenarios we have studied the
impact of the corrections on the total coannihilation cross section. Especially for the
light Higgs boson in the final state, we have achieved corrections of around 30 %.
This leads to an significant effect on the prediction of the relic density. We have
reached corrections of around 10 %. As this effect is larger than the experimental
uncertainties of the Planck satellite, a significant shift within the studied parameter
space has been caused. Thus, it is important to take these corrections into account
in order to obtain a precise theoretical relic density prediction.
Therefore, we have implemented the SUSY-QCD corrections in DM@NLO. This comput-
ing tool can be linked to existing software packages like MicrOMEGAs and DarkSUSY,
which compute the relic density for a specific point in the MSSM parameter space.
Making DM@NLO publicly available in the future, it can be of interest for everybody
who includes the relic density constraint in a parameter study or a global fit.
For the future we plan to join the different subprojects of DM@NLO which we have
introduced in Chapter 5. This will allow us to perform phenomenological studies in
further regions of the parameter space and is expected to show a similar striking
impact of SUSY-QCD corrections on the neutralino relic density prediction. Based
on the work performed within this thesis, an extension to models beyond the MSSM
would also be possible. Due to the generic implementation of our calculation, this
can be achieved with a reasonable effort. One example for such an extension could be
the NMSSM. Further, it would be interesting to consider Sommerfeld enhancement.
This has been studied in the literature quite recently [258–260] and is also expected
to have a non-negligible impact.
All in all, we have shown that the performed SUSY-QCD corrections have a signif-
icant impact on the neutralino relic density prediction. This topic connects many
different fields of research, offers a broad phenomenology, and give rise to many
interesting new questions.

1As a last final IR-convergence check regarding the gluon final state has not been finalized yet,
we have restricted ourselves to studying only the processes with a Higgs or electroweak vector
boson in the final state.
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A Couplings

We present all necessary couplings with respect to neutralino-stop coannihilation.
As mixing between generations is not taken into account, the generation index g is
suppressed in the following.

A.1 Neutralino-Squark-Quark

Âq
ij = i [Aq L

ij PL + Aq R
ij PR] (A.1)

χj˜

qg,i˜

qg
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A.2 Chargino-Squark-Quark

Up-type squark/quark

AuL
ij =
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√

2MW cos β
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A.3 Quark-Quark-Higgs

F̂ q
Φ = i [F q L

Φ PL + F q R
Φ PR] (A.8)
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Down-type quark

F dL
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A.4 Squark-Squark-Higgs
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Incoming up-type squark
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(Au cos β + µ sinβ) (A.54)

A.5 Neutralino-Neutralino-Higgs

ĤΦ
ij = i [HΦL

ij PL +HΦR
ij PR] (A.55)

χj˜

Φ

χi˜

Hh0 L
ij = − g2

2 ∗ sin θW
((− sinα)(N∗

j3N
∗
i2 +N∗

i3N
∗
j2 −

sin θW
cos θW

(N∗
j3N

∗
i1 +N∗

i3N
∗
j1))

(A.56)

− cosα(N∗
j4N

∗
i2 +N∗

i4N
∗
j2 −

sin θW
cos θW

(N∗
j4N

∗
i1 +N∗

i4N
∗
j1)))

Hh0 R
ij = − g2

2 sin θW
((− sinα)(Nj3Ni2 +Ni3Nj2 −

sin θW
cos θW

(Nj3Ni1 +Ni3Nj1))

(A.57)

− cosα(Nj4Ni2 +Ni4Nj2 −
sin θW
cos θW

(Nj4Ni1 +Ni4Nj1)))
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HH0 L
ij = − g2

2 sin θW
((+ cosα)(N∗

j3N
∗
i2 +N∗

i3N
∗
j2 −

sin θW
cos θW

(N∗
j3N

∗
i1 +N∗

i3N
∗
j1))

(A.58)

− sinα(N∗
j4N

∗
i2 +N∗

i4N
∗
j2 −

sin θW
cos θW

(N∗
j4N

∗
i1 +N∗

i4N
∗
j1)))

HH0 R
ij = − g2

2 sin θW
((+ cosα)(Nj3Ni2 +Ni3Nj2 −

sin θW
cos θW

(Nj3Ni1 +Ni3Nj1))

(A.59)

− sinα(Nj4Ni2 +Ni4Nj2 −
sin θW
cos θW

(Nj4Ni1 +Ni4Nj1)))

HA0 L
ij = − i g2

2 sin θW
((− sin β)(N∗

j3N
∗
i2 +N∗

i3N
∗
j2 −

sin θW
cos θW

(N∗
j3N

∗
i1 +N∗

i3N
∗
j1))

(A.60)

+ cos β(N∗
j4N

∗
i2 +N∗

i4N
∗
j2 −

sin θW
cos θW

(N∗
j4N

∗
i1 +N∗

i4N
∗
j1)))

HA0 R
ij = +

i g2
2 sin θW

((− sin β)(Nj3Ni2 +Ni3Nj2 −
sin θW
cos θW

(Nj3Ni1 +Ni3Nj1))

(A.61)

+ cos β(Nj4Ni2 +Ni4Nj2 −
sin θW
cos θW

(Nj4Ni1 +Ni4Nj1)))

A.6 Neutralino-Chargino-Higgs

HH+ L
ij = − g2 cos β

sin θW
(V ∗

j1N
∗
i4 +

1√
2

(N∗
i2 +

sin θW
cos θW

N∗
i1)V

∗
j2) (A.62)

HH+ R
ij = − g2 sin β

sin θW
(Wj1Ni3 −

1√
2

(Ni1 +
sin θW
cos θW

Ni1)Wj2) (A.63)

A.7 Fermion-Fermion-Gluon

B̂ = i B (A.64)

B = −gs (A.65)

(A.66) q

g

q
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A Couplings

A.8 Sfermion-Sfermion-Gluon

Ĉij = i Cij (A.67)

Cij = g2sδij (A.68) qi˜

qj˜

g

A.9 Gluino-Squark-Quark

Ĵq
j = i [Jq L

j PL + Jq R
j PR] (A.69)

Jq L
j = −gs

√
2Uu

j1 (A.70)

Jq R
j = gs

√
2Uu

j2 (A.71) q

qj˜

g̃
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B Vertex Counterterms

B.1 Neutralino-Squark-Quark

δÂq
ij = i [δAq L

ij PL + δAq R
ij PR] (B.1)

Up-type squark/quark

δAuR
ij = − g2mu

sin θW
√

2MW sin β
Nj 4U

u
i2

(
δmu

mu
+
δUu

i2

Uu
i2

)
(B.2)

−
√

2g2
sin θW

(
(qu − I3u)

sin θW
cos θW

Nj 1 + I3uNj 2

)
δUu

i1

+ AuR
1j

1

2
δZu

1 i + AuR
2j

1

2
δZu

2 i + AuR
ij

1

2
δZ∗u

L

δAuL
ij = − g2mu

sin θW
√

2MW sin β
N∗

j 4U
u
i1

(
δmu

mu

+
δUu

i1

Uu
i1

)
(B.3)

+

√
2g2qu

cos θW
N∗

j 1δU
u
i2

+ AuL
1j

1

2
δZu

1 i + AuL
2j

1

2
δZu

2 i + AuL
ij

1

2
δZ∗u

R

Down-type squark/quark

δAdR
ij = − g2md

sin θW
√

2MW cos β
Nj 3U

d
i2

(
δ
δmd

md
+
δUd

i2

Ud
i2

)
(B.4)

−
√

2g2
sin θW

(
I3dNj 2 + (qd − I3d)

sin θW
cos θW

Nj 1

)
δUd

i1

+ AdR
1j

1

2
δZd

1 i + AdR
2j

1

2
δZd

2 i + AdR
ij

1

2
δZ∗ d

L

δAdL
ij = − g2md

sin θW
√

2MW cos β
N∗

j 3U
d
i1

(
δmd

md
+
δUd

i1

Ud
i1

)
(B.5)

+

√
2g2 qd

cos θW
N∗

j 1δU
d
i2
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+ AdL
1j

1

2
δZd

1 i + Ad L
2j

1

2
δZd

2 i + AdL
ij

1

2
δZ∗d

R

B.2 Chargino-Squark-Quark

Up-type squark/quark

δAuL
ij =

g2md

sin θW
√

2MW ∗ cos β
W ∗

j 2U
u
i1

(
δmd

md
+
δUu

i1

Uu
i1

)
(B.6)

+ AuL
1j

1

2
δZu

1 i + AuL
2j

1

2
δZu

2 i + AuL
ij

1

2
δZ∗ d

R

δAuR
ij = − g2

sin θW
Vj 1δU

u
i1 +

g2mu

sin θW ∗
√

2MW ∗ sin β
Vj 2U

u
i2

(
δmu

mu
+
δUu

i2

Uu
i2

)
(B.7)

+ AuR
1j

1

2
δZu

1 i + AuR
2j

1

2
δZu

2 i + AuR
ij

1

2
δZ∗ d

L

Down-type squark/quark

δAdL
ij =

g2 ∗mu

sin θW ∗
√

2MW ∗ sin β
V ∗
j 2U

d
i1

(
δmu

mu
+
δUd

i1

Ud
i1

)
(B.8)

+ AdL
1j

1

2
δZd

1 i + Ad L
2j

1

2
δZd

2 i + Ad L
ij

1

2
δZ∗ d

R

δAdR
ij = − g2

sin θW
Wj 1δU

d
i1 +

g2md

sin θW ∗
√

2MW ∗ cos β
Wj,2U

d
i2

(
δmd

md
+
δUd

i2

Ud
i2

)
(B.9)

+ AdR
1j

1

2
δZd

1 i + AdR
2j

1

2
δZd

2 i + AdR
ij

1

2
δZ∗ d

L

B.3 Quark-Quark-Higgs

δF̂ q
Φ = i [δF q L

Φ PL + δF q R
Φ PR] (B.10)

for Φ = h0, H0, A0, H±

Up-type quark

δF uL
Φ =F uL

Φ

(
δmu

mu
+

1

2
δZu

R +
1

2
δZ∗u

L

)
(B.11)

δF uR
Φ =F uR

Φ

(
δmu

mu
+

1

2
δZu

L +
1

2
δZ∗u

R

)
(B.12)
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Down-type quark

δF dL
Φ =F dL

Φ

(
δmd

md
+

1

2
δZd

R +
1

2
δZ∗ d

L

)
(B.13)

δF dR
Φ =F dL

Φ

(
δmd

md

+
1

2
δZd

L +
1

2
δZ∗ d

R

)
(B.14)

B.4 Squark-Squark-Higgs

δĜq
Φ, ij = i δGq

Φ, ij (B.15)

Neutral Higgs

Gq
Φ, ij =

∑

t

[
∑

s

(
δU q

itG̃
q
Φ, stU

q
js + U q

itδG̃
q
stU

q
js + U q

itG̃
q
Φ, stδU

q
js

)

+
1

2
δZq ∗

tj G
q
Φ it +

1

2
Zq

tiG
q
Φ, tj

]
(B.16)

Charged Higgs

Gu
Φ, ij =

∑

t

[
∑

s

(
δUu

itG̃
u
Φ, stU

d
js + Uu

itδG̃
u
stU

d
js + Uu

itG̃
u
Φ, stδU

d
js

)

+
1

2
δZd ∗

tj G
q
Φ it +

1

2
Zu

tiG
q
Φ, tj

]
(B.17)

Gd
Φ, ij =

∑

t

[
∑

s

(
δUd

itG̃
d
Φ, stU

u
js + Ud

itδG̃
d
stU

q
js + Ud

itG̃
d
Φ, stδU

u
js

)

+
1

2
δZu ∗

tj G
q
Φ it +

1

2
Zd

tiG
q
Φ, tj

]
(B.18)

Up-type squark

δG̃u
h0, 11 = − g2m

2
u cosα

MW sin θW sin β

2 δmu

mu
(B.19)

δG̃u
h0, 22 = − g2m

2
u cosα

MW sin θW sin β

2 δmu

mu
(B.20)
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δG̃u
h0, 12 = − g2mu cosα

2MW sin θW sin β
Au

(
δmu

mu

+
δAu

Au

)
(B.21)

− g2mu sinα

2MW sin θW sin β
µ
δmu

mu

δG̃u
h0, 21 = δG̃u

h0, 12 (B.22)

δG̃u
H0, 11 = − g2m

2
u sinα

MW sin θW sin β

2 δmu

mu
(B.23)

δG̃u
H0, 22 = − g2m

2
u sinα

MW sin θW sin β

2 δmu

mu

(B.24)

δG̃u
H0, 12 = − g2mu sinα

2MW sin θW sin β
Au

(
δmu

mu
+
δAu

Au

)
(B.25)

+
g2mu cosα

2MW sin θW sin β
µ
δmu

mu

δG̃u
H0, 21 = δG̃u

h0, 12 (B.26)

δG̃u
A0, 11 = 0 (B.27)

δG̃u
A0, 22 = 0 (B.28)

δG̃u
A0, 12 =

i g2mu cos β

2MW sin θW sin β
Au

(
δmu

mu
+
δAu

Au

)
(B.29)

+
i g2mu

2MW sin θW
µ
δmu

mu

δG̃u
A0, 21 = − δG̃u

A0, 12 (B.30)

δG̃u
H+, 11 =

g2m
2
d sin β√

2MW sin θW cos β

2 δmd

md
+

g2m
2
u cos β√

2MW sin θW sin β

2 δmu

mu
(B.31)

δG̃u
H+, 22 =

(
g2mumd cos β√

2MW sin θW sin β
+

g2mdmu sin β√
2MW sin θW cos β

)(
δmu

mu
+
δmd

md

)

(B.32)

δG̃u
H+, 12 =

g2mu cos β√
2MW sin θW sin β

Au

(
δmu

mu
+
δAu

Au

)
(B.33)

+
g2mu√

2MW sin θW
µ
δmu

mu
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δG̃u
H+, 21 =

g2md sin β√
2MW sin θW cos β

Ad

(
δmd

md

+
δAd

Ad

)
(B.34)

+
g2md√

2MW sin θW
µ
δmd

md

Down-type squark

δG̃d
h0, 11 =

g2m
2
d sinα

MW sin θW cos β

2 δmd

md

(B.35)

δG̃d
h0, 22 =

g2m
2
d sinα

MW sin θW cos β

2 δmd

md
(B.36)

δG̃d
h0, 12 =

g2md sinα

2MW sin θW cos β
Ad

(
δmd

md
+
δAd

Ad

)
+

g2md cosα

2MW sin θW cos β
µ
δmd

md

(B.37)

δG̃d
h0, 21 = δG̃d

h0, 12 (B.38)

δG̃d
H0, 11 = − g2m

2
d cosα

MW sin θW cos β

2 δmd

md
(B.39)

δG̃d
H0, 22 = − g2m

2
d cosα

MW sin θW cos β

2 δmd

md

(B.40)

δG̃d
H0, 12 = − g2md cosα

2MW sin θW cos β
Ad

(
δmd

md
+
δAd

Ad

)
+

g2md sinα

2MW sin θW cos β
µ
δmd

md

(B.41)

δG̃d
H0, 21 = δG̃d

H0, 12 (B.42)

δG̃d
H0, 11 = 0 (B.43)

δG̃d
H0, 22 = 0 (B.44)

δG̃d
H0, 12 =

i g2md sin β

MW sin θW cos β
Ad

(
δmd

md
+
δAd

Ad

)
+

i g2md

2MW sin θW
µ
δmd

md
(B.45)

δG̃d
H0, 21 = − δG̃d

H0, 12 (B.46)

δG̃d
H−, 11 =

g2m
2
d sin β√

2MW sin θW cos β

2 δmd

md
+

g2mu2
g

cos β
√

2MW sin θW sin β

2 δmu

mu
(B.47)
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δG̃d
H−, 22 =

(
g2mumd cos β√

2MW sin θW sin β
+

g2mdmu sin β√
2MW sin θW cos β

)(
δmu

mu

+
δmd

md

)

(B.48)

δG̃d
H−, 12 =

g2md sin β√
2MW sin θW cos β

Ad

(
δmd

md

+
δAd

Ad

)
+

g2md√
2MW sin θW

µ
δmd

md

(B.49)

δG̃d
H−, 21 =

g2mu cos β√
2MW sin θW sin β

Au

(
δmu

mu
+
δAu

Au

)
+

g2mu√
2MW sin θW

µ
δmu

mu

(B.50)

B.5 Fermion-Fermion-Gluon

δB̂ = i δB (B.51)

δB = −gs
(

1

2
(δZL + δZ∗

L + δZg) +
δgs
gs

)
(B.52)

B.6 Sfermion-Sfermion-Gluon

δĈij = i δCij (B.53)

δCij = −gs
(

1

2
(δZ∗

i j + δZj i + δZg
ij) +

δgs
gs
δij

)
(B.54)
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C Propagator Corrections and
Counterterms

C.1 Corrections

C.1.1 Quark Self-Energies

Gluon contribution

g0 = −gs (C.1)

g1 = −gs (C.2)

M0 = 0 (C.3)

M1 = mq (C.4)

q q

q

g

g1g0

M0

M1

B0(s, 0, m
2
q) (C.5)

Zs
L =

CF

8π2
g0g1mq2B0 (C.6)

Zs
R = Zs

L (C.7)

Zv
L =

CF

16π2
g0g1 (2B0 + 2B1) (C.8)

Zv
R = Zv

L (C.9)

Gluino contribution

g0L = Jq L
j , g0R = Jq R

j (C.10)

g1L = Jq R
j g1R = Jq L

j (C.11)

M0 = mg̃ (C.12)

M1 = mq̃j (C.13)

q q

qj˜

g̃

g1g0

M0

M1
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B0(s,m
2
g̃, m

2
q̃j

) (C.14)

Zs
L =

2∑

j=1

CF

16π2
g0Lg1Lmg̃B0 (C.15)

Zs
R = Zs

L (C.16)

Zv
L =

2∑

j=1

− CF

16π2
g0Rg1LB1 (C.17)

Zv
R = Zv

L (C.18)

C.1.2 Squark Self-Energies

Gluon contribution

g0 = −gs (C.19)

g1 = −gs (C.20)

M0 = 0 (C.21)

M1 = mq̃g, i (C.22)

qi˜ qi˜

qi˜

g

g1g0

M0

M1

A0(m
2
q̃i

) (C.23)

B0(t, 0, m
2
q̃i

) (C.24)

Ps = − CF

16π2
(g0g1(2(t+M2

1 )B0 − A0)) (C.25)

Gluino contribution

g0L = Jq R
j , g0R = Jq L

j (C.26)

g1L = Jq L
j , g1R = Jq R

j (C.27)

M0 = mg̃ (C.28)

M1 = mq (C.29)

qi˜ qj˜

q

g̃

g1g0

M0

M1

B0(t,m
2
g̃m

2
q) (C.30)
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Ps = − CF

16π2
((g0Lg1R + g0Rg1L)(A0(M1) + A0(M0) + (M2

0 +M2
1 − t)B0)

+ 2(g0Rg1R + g0Lg1L)M0M1B0) (C.31)

Squark contribution

qi˜ qj˜

qk˜

g0

M0

g0 = −g2s (U q
l1U

q
i1 − U q

l2U
q
i2)(U

q′g
j1U

q′g
k1 − U

q′g
j2U

q′g
k2) (C.32)

M0 = mq̃g, k (C.33)

Ps =
2∑

k=1

− CF

16π2
g0A0(M0) (C.34)
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C.2 Counterterms

C.2.1 Quark Self-Energies

In order to be consistent with the implementation within DM@NLO, we merge the
conventions set due to renormalization with those of the generic amplitude structure
in Eqs. C.35 and C.36.

δZv
R =

1

2

(
δZL + δZ†

L

)
(C.35)

δZv
L =

1

2

(
δZR + δZ†

R

)
(C.36)

δZs
L = −1

2

(
mqδZL +mqδZ

†
R

)
− δmq (C.37)

δZs
R = −1

2

(
mqδZR +mqδZ

†
L

)
− δmq (C.38)

δZL =
{
−ΠV,L(m2

q) −mq

[
mq

(
Π̇V,L(m2

q) + Π̇V,R(m2
q)
)

+ Π̇S,L(m2
q) + Π̇S,R(m2

q)
]}

(C.39)

δZR =
{
−ΠV,R(m2

q) −mq

[
mq

(
Π̇V,R(m2

q) + Π̇V,L(m2
q)
)

+ Π̇S,R(m2
q) + Π̇S,L(m2

q)
]}

(C.40)

Gluon Loop

B0(p
2,M2

1 ,M
2
0 ) (C.41)

ΠV,R = Zv
R (C.42)

ΠV,L = Zv
L (C.43)

Π̇S,R = − CF

16π2
4g0g1M1Ḃ0 (C.44)

Π̇S,L = − CF

16π2
4g0g1M1Ḃ0 (C.45)

Π̇V,R = − CF

16π2
2g0g1Ḃ1 (C.46)

Π̇V,L = − CF

16π2
2g0g1Ḃ1 (C.47)
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Gluino Loop

B0(p
2,M2

0 ,M
2
1 ) (C.48)

ΠV,R = Zv
R (C.49)

ΠV,L = Zv
L (C.50)

Π̇S,R = +
CF

16π2
g0Rg1RM0Ḃ0 (C.51)

Π̇S,L = +
CF

16π2
g0Lg1LM0Ḃ0 (C.52)

Π̇V,R = − CF

16π2
g0Rg1LḂ1 (C.53)

Π̇V,L = − CF

16π2
g0Lg1RḂ1 (C.54)

C.2.2 Squark Self-Energies

δPs(ij) = Π̂ij(k
2) =

1

2
(k2 −m2

q̃i
)δZij +

1

2
(k2 −m2

q̃j
)δZ∗

ji − δijδm
2
q̃i
, (C.55)

δZij =
2

m2
q̃i
−m2

q̃j

ReΠij(m
2
q̃j

), i 6= j (C.56)

δZii = −ReΠ̇ii(k
2)
∣∣∣
k2=m2

q̃i

(C.57)

Gluon Loop

Πij(p
2) = − CF

16π2
g0g1(2(M2

1 + p2)Ḃ0(p
2,M0,M1) + 2B0(p

2,M0,M1)) (C.58)

Gluino Loop

Πij(p
2) = = − CF

16π2
(2(g0Lg1L + g0Rg1R)M0M1Ḃ0(p

2,M0,M1)

+ (g0Rg1L + g0Lg1R)((M2
0 +M2

1 − p2)Ḃ0(p
2,M0,M1) −B0(p

2,M0,M1)))
(C.59)
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D Vertex Corrections

D.1 Neutralino-Sfermion-Fermion Coupling

(A-Coupling)

D.1.1 Gluon Contribution

Correction to the S-Channel Diagram

g0 = −gs (D.1)

g1L = Aq L
in , g1R = Aq R

in (D.2)

g2L = −gs, g2R = −gs (D.3)

M0 = mq (D.4)

M1 = m2 (D.5)

M2 = mg̃ (D.6)

M0

M1

M2

g2

χn˜

qi˜ q

qi˜

g
q

g0

g1

B0(m
2
2, m

2
2, 0) (D.7)

C0(m
2
1, m

2
2, s,m

2
q, m

2
2, 0) (D.8)

As
1L =

CF

16π2
[−g0g1Rg2LM0m1(2C0 + C1)

+ g0g1Lg2L(B0 +M2
0C0 + sC2 + 2m2

1C1 + 2m2
1C2 − 2m2

2C2)
]

(D.9)

As
1R = As

1L(R ↔ L) (D.10)

Av
1L =

CF

16π2
[g0g1Rg2LM0(C0 − C2) − g0g1Lg2Lm1(2C2 + C1)] (D.11)

Av
1R = Av

1L(R ↔ L) (D.12)
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Correction to the T-Channel Diagram

M0 = m3 (D.13)

M1 = mq̃i (D.14)

M2 = 0 (D.15)

B0(t,m
2
q̃i
, 0) (D.16)

C0(m
2
1, t,m

2
3, m

2
3, m

2
q̃i
, 0) (D.17)

As
2L =

CF

16π2

[
g0Lg1Lg2L(B0 +M2

0C0 −m2
3C2 + 2m2

1C1 + 2(m2
1 +m2

3 − t)C2)

− g0Rg1Rg2Rm1m3(C1 + 2C2) − g0Lg1Rg2LM0m1(2C0 + C1)

− g0Rg1Lg2RM0m3(C0 − C2)] (D.18)

As
2R = As

2L(R ↔ L) (D.19)

Correction to the U-Channel Diagram

M0 = m3 (D.20)

M1 = mq̃i (D.21)

M2 = 0 (D.22)

B0(m
2
2, m

2
q̃i
, 0) (D.23)

C0(u,m
2
2, m

2
3, m

2
3, m

2
q̃i
, 0) (D.24)

As
3L =

CF

16π2

[
g0Lg1Lg2L(B0 +M2

0C0 + 2uC1 + (2u− 2m2
2 +m2

3)C2)

+ g0Rg1Lg2Rm3M0(C0 − C2)] (D.25)

As
3R = As

3L(R ↔ L) (D.26)

Av
3L = − CF

16π2
[g0Lg1Rg2LM0(2C0 + C1) + g0Rg1Rg2Rm3(C1 + 2C2)] (D.27)

Av
3R = Av

3L(R ↔ L) (D.28)

198



D Vertex Corrections

D.1.2 Gluino Contribution

Correction to the S-Channel Diagram

g0L = Jq R ∗
i , g0R = Jq L ∗

i (D.29)

g1L = Aq R ∗
jn , g1R = Aq L ∗

jn (D.30)

g2L = Jq R ∗
j , g2R = Jq L ∗

j (D.31)

M0 = mq̃j (D.32)

M1 = mq (D.33)

M2 = mg̃ (D.34)

q

χn˜

q

qi˜

qj˜
g̃

M0

M1

M2
g0

g2

g1

B0(m
2
2, m

2
q , m

2
g̃) (D.35)

C0(m
2
1, m

2
2, s,m

2
q̃j
, m2

q , m
2
g̃) (D.36)

As
1L =

2∑

j=1

− CF

16π2

[
(g0Lg1Lg2LM1M2 + g0Lg1Rg2LM2m1)C0 + g0Rg1Lg2L(B0 +M2

0C0)

+ g0Lg1Rg2LM2m1C1 + g0Rg1Rg2LM1m1C1 + g0Rg1Lg2L(m2
1C1 + sC2)

]
(D.37)

As
1L = As

1R(R↔ L) (D.38)

Av
1R =

2∑

j=1

− CF

16π2
[(g0Rg1Rg2LM1 + g0Rg1Lg2Lm1)C0 + g0Lg1Rg2LM2C2

+ g0Rg1Rg2LM1C2 + g0Rg1Lg2Lm1(C1 + C2)] (D.39)

As
1L = As

1R(R↔ L) (D.40)

Correction to the T-Channel Diagram

M0 = mq̃′j
(D.41)

M1 = mq′ (D.42)

M2 = mg̃ (D.43)
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B0(t,m
2
q′ , m

2
g̃) (D.44)

C0(m
2
1, t,m

2
3, m

2
q̃′j
, m2

q′ , m
2
g̃) (D.45)

As
2L =

2∑

j=1

− CF

16π2
[g0Lg1Lg2LM1M2C0 + g0Lg1Rg2LM2m1(C0 + C1)

+ g0Lg1Lg2RM1m3(C0 + C2) + g0Lg1Rg2Rm1m3(C0 + C1 + C2)

+ g0Rg1Lg2RM2m3C2 + g0Rg1Rg2LM1m1C1

+ g0Rg1Lg2L(B0 +M2
0C0 +m2

1C1 +m2
3C2)

]
(D.46)

As
2R = As

2L(R ↔ L) (D.47)

Correction to the U-Channel Diagram

M0 = mq̃′j
(D.48)

M1 = mq (D.49)

M2 = mg̃ (D.50)

B0(m
2
2, m

2
q , m

2
g̃) (D.51)

C0(u,m
2
2, m

2
3, m

2
q̃′j
, m2

q, m
2
g̃) (D.52)

As
3L = − CF

16π2

2∑

j=1

[g0Lg1Lg2LM1M2C0 + g0Lg1Lg2RM1m3(C0 + C2)

+ g0Rg1Lg2RM2m3C2 + g0Rg1Lg2L(B0 +M2
0C0 + uC1 +m2

3C2)
]

(D.53)

As
3R = As

3L(R↔ L) (D.54)

Av
3L = − CF

16π2

2∑

j=1

[g0Rg1Rg2LM1C1 + g0Lg1Rg2LM2(C0 + C1)

+ g0Lg1Rg2Rm3(C0 + C1 + C2)] (D.55)

Av
3R = Av

3L(R↔ L) (D.56)
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D.2 Higgs-Fermion-Fermion Coupling (F-Coupling)

D.2.1 Gluon Contribution

g0L = −gs, g0R = −gs (D.57)

g1L = −gs, g1R = −gs (D.58)

g2L = F q L
Φ , g2R = F q R

Φ (D.59)

M0 = 0 (D.60)

M1 = mq (D.61)

M2 = m3 (D.62)

q’

q

q’

g
q

g2

g0

g1

M0

M1

M2

Φ

q’

q

q’

g
q

g2

g1

M0

M1

M2

B0(m
2
4, m

2
q, m

2
3) (D.63)

C0(s,m
2
4, m

2
3, 0, m

2
q, m

2
3) (D.64)

F s
L =

CF

8π2

[
g0Rg1Lg2L(2B0 + (s+m2

3 −m2
4 + 2M2

0 )C0

+ (3s+m2
3 −m2

4)C1 + (s+ 3m2
3 −m2

4)C2)

+ g0Rg1Rg2RM1m3(−C0 − C2) + 2g0Rg1Lg2RM1M2C0

− g0Rg1Rg2LM2m3C2] (D.65)

F s
R = F s

L(R ↔ L) (D.66)

F s
L = −CF

8π2
[g0Lg1Lg2LM1C1 + g0Lg1Lg2RM2(C0 + C1)] (D.67)

F v
R = F v

L(R↔ L) (D.68)
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D.2.2 Gluino Contribution

g0L = Jq L
k , g0R = Jq R

k (D.69)

g1L = Jq′ R ∗
j , g1R = Jq′ L ∗

j (D.70)

g2 = Gq
Φ, kj (D.71)

M0 = mg̃ (D.72)

M1 = mq̃k (D.73)

M2 = mq̃′j
(D.74)

q

q’

g̃
g0

g2

g1

M0

M1

M2qk˜

qj˜'

Φ

g0

g2

C0(s,m
2
4, m

2
3, m

2
g̃, m

2
q̃k
, m2

q̃j
) (D.75)

F s
L = − CF

16π2

2∑

j=1

2∑

k=1

[g0Lg1Lg2M0C0 − g0Lg1Rg2m3C2] (D.76)

F s
R = F s

L(R↔ L) (D.77)

F v
L = − CF

16π2

2∑

j=1

2∑

k=1

[g0Rg1Lg2C1] (D.78)

F v
R = F v

L(R ↔ L) (D.79)
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D Vertex Corrections

D.3 Higgs-Sfermion-Sfermion Coupling (G-Coupling)

D.3.1 Gluon Contribution

g0 = Gq
Φ, ij (D.80)

g1 = −gs (D.81)

g2 = −gs (D.82)

M0 = m2 (D.83)

M1 = mq̃′j
(D.84)

M2 = 0 (D.85)

qi˜
g

qi˜

qj˜
,

g1

g0g2
Φ

M0

M1
M2

qj˜
,

B0(t,m
2
q̃′j
, 0) (D.86)

C0(m
2
4, t,m

2
2, m

2
2, m

2
q̃′j
, 0) (D.87)

G =
CF

16π2
g0g1g2

[
B0 + (M2

0 + t−m2
4)C0 + (t+m2

4 −m2
2)C1 + (m2

4 −m2
2 − t)C2

]

(D.88)

D.3.2 Gluino Contribution

g0L = F q L
Φ , g0R = F q R

Φ (D.89)

g1L = Jq′ L
j , g1R = Jq′ R

j (D.90)

g2L = Jq R ∗
i g2R = Jq L ∗

i (D.91)

M0 = mq (D.92)

M1 = mq′ (D.93)

M2 = mg̃ (D.94)
qi˜

q
q’

g̃

g1

g0g2
Φ

M0

M1
M2

qj˜
,

B0(t,m
2
q′, m

2
g̃) (D.95)

C0(m
2
4, t,m

2
2, m

2
q , m

2
q′, m

2
g̃) (D.96)

G =
CF

16π2
[(g0Lg1Lg2L + g0Rg1Rg2R)2M0M1M2C0

+ (g0Rg1Rg2L + g0Lg1Lg2R)M1(2(B0 +M2
0C0 +m2

2C2) + (m2
2 +m2

4 − t)C1)
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+ (g0Lg1Rg2R + g0Rg1Lg2L)M2(2(B0 +M2
0C0 +m2

4C1) + (m2
2 +m2

4 − t)C2)

+ (g0Lg1Rg2L + g0Rg1Lg2R)M0(2(B0 +M2
0C0 +m2

4C1 +m2
2C2)

+ (m2
2 +m2

4 − t)(C0 + C1 + C2))
]

(D.97)

D.3.3 Squark Contribution

M0

qj˜
,

qk˜
ql˜
,

g1

g0

Φ

M1

qi˜

g0 = −g2s(U q
l1U

q
i1 − U q

l2U
q
i2)(U

q′

j1U
q′

k1 − U q′

j2U
q′

k2) (D.98)

g1 = Gq
Φ, lk (D.99)

B0(m
2
4, m

2
q̃k
, m2

q̃′
l
) (D.100)

G =

2∑

l=1

2∑

k=1

CF

16π2
g0g1B0 (D.101)
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E Box Contributions

E.1 S-Channel Box with Gluon

g0 = −gs (E.1)

g1L = Aq L
in , g1R = Aq R

in (E.2)

g2L = F q L
Φ , g2R = F q R

Φ (E.3)

g3 = −gs (E.4)

M0 = 0 (E.5)

M1 = m2 (E.6)

M2 = mq (E.7)

M3 = m3 (E.8)

χn
0˜ qi˜

q’

q

qi˜

q’

g

Φ
g2

g0g1

M2

M1

M0

M3

g3

C ′
0(m

2
2, s,m

2
1,M

2
1 ,M

2
0 ,M

2
2 ) (E.9)

C0(m
2
1, m

2
4, u,M

2
1 ,M

2
2 ,M

2
3 ) (E.10)

D0(m
2
2, m

2
1, m

2
4, m

2
3, s, u,M

2
0 ,M

2
1 ,M

2
2 ,M

2
3 ) (E.11)

Bs
1L = − CF

16π2

[
g0g3(g1L(−(g2R(m3 −M3)(C0 +M2

0D0 + sD2 +m2
2(2D0 + 3D1 + 2D2)))

+ g2R(−m33 + 2m2
3M3 +m3M

2
3 + 2m2

2(−m3 +M3) − 2M3u)D3

+ g2LM2(C0 +M2
0D0 − 2uD0 − uD1 +m2

1D2 − tD2 − uD2 +m3M3D3 − 2uD3

+ m2
2(2D0 + 3(D1 +D2) + 2D3) +m2

3(2D0 +D1 + 2D2 + 3D3)))

+ g1Rm1(g2RM2(−m3 +M3)D2 + g2L
+ ×(C0 + C ′

2 +M2
0D0 − 2uD0 − uD1 + (m2

1 +M2
3 − t)D2 − 3uD2 +m3M3D3

− 2uD3 +m2
2(2D0 + 3(D1 +D2) + 2D3) +m2

3(2D0 +D1 + 3(D2 +D3)))))
]

(E.12)

Bs
1R = Bs

1L(R ↔ L) (E.13)
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Bv
1L = − CF

16π2
[g0g3(g1Lm1(2g2LM2D2 + g2R(−m3 +M3)(2D0 +D1 + 2D2)

− 2g2Rm3D3) + g1R(g2RM2((−m3 +M3)(2D0 +D1 +D2) − 2m3D3)

+ g2L(3C0 − C ′
0 − C ′

1 + 3M2
0D0 − 2uD0 +M2

3D1 − 3uD1

+ (m2
1 +M2

3 + 2s− t)D2 − 3uD2 −m3M3D3 − 2uD3

+ m2
2(2D0 + 5D1 + 3D2 + 2D3) +m2

3(2D0 + 2D1 + 3D2 + 5D3))))
]

(E.14)

Bv
1R = Bv

1L(R ↔ L) (E.15)
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E.2 T-Channel Box with Gluon

g0 = −gs (E.16)

g1 = −gs (E.17)

g2L = Aq′ L
jn , g2R = Aq′ R

jn (E.18)

g3 = Gq
Φ, ij (E.19)

M0 = 0 (E.20)

M1 = m3 (E.21)

M2 = mq̃′j
(E.22)

M3 = m2 (E.23)

Φ

χn
0˜ qi˜

q’

qj˜

q

qk˜
,

g̃

g2

g0g1

M2

M1

M0
M3

g3

C0(m
2
1, m

2
4, u,M

2
1 ,M

2
2 ,M

2
3 ) (E.24)

D0(m
2
3, m

2
1, m

2
4, m

2
2, t, u,M

2
0 ,M

2
1 ,M

2
2 ,M

2
3 ) (E.25)

Bs
2L = − CF

16π2

2∑

j=1

[
g0g1g3(2g2L(m2

2 +m2
3 − u)D0 + g2L(C0 +M2

0D0)

+ g2L(2m2
2 +m3(3m3 +M1) − 2u)D1 + g2L(3m2

2 +m2
3 − u)D3

+ (g2Rm1(m3 −M1) + g2L(−m2
1 + 2m2

2 +m3(2m3 +M1) + t− 2u))D2

]

(E.26)

Bs
2R = Bs

2L(R↔ L) (E.27)

Bv
2L = − CF

16π2

2∑

j=1

[g0g1g3(2g2R(−m3 +M1)D0 − 2g2Rm3D1

− 2(g2Lm1 + g2Rm3)D2 + g2R(−m3 +M1)D3)] (E.28)

Bv
2R = Bv

2L(R↔ L) (E.29)
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E.3 S-Channel Box with Gluino

g0L = Jq R ∗
i , g0R = Jq L ∗

i (E.30)

g1L = Aq R ∗
jn g1R = Aq L ∗

jn (E.31)

g2 = Gq
Φ, jk (E.32)

g3L = Jq′ R ∗
k g3R = Jq′ L ∗

k (E.33)

M0 = mg̃ (E.34)

M1 = mq (E.35)

M2 = mq̃j (E.36)

M3 = mq̃′
k

(E.37)

χn
0˜ q’

qi˜

qj˜
,

q’

qi˜

g

Φ

g2

g0

g1

M2

M1
M0

M3

g3

C0(m
2
1, m

2
4, u,M

2
1 ,M

2
2 ,M

2
3 ) (E.38)

D0(m
2
2, m

2
1, m

2
4, m

2
3, s, u,M

2
0 ,M

2
1 ,M

2
2 ,M

2
3 ) (E.39)

Bs
3L =

CF

16π2

2∑

j=1

2∑

k=1

[
g2(g0Lg1Lg3LM0M1D0 + g0Rg1Lg3L(C0 +M2

0D0)

+g0Rg1Lg3Lm
2
2D1 − g3L(m1(g0Rg1Lm1 + g0Lg1RM0 + g0Rg1RM1) − g0Rg1Ls)D2

− g1Lg3Rm3(g0RM0 + g0LM1)D3)] (E.40)

Bs
3R = Bs

3L(R ↔ L) (E.41)

Bs
3L =

CF

16π2

2∑

j=1

2∑

k=1

[g2(−(g0Lg1Rg3LM0D0) − g1Rg3L(g0LM0 + g0RM1)D1

− g3L(g0Rg1Lm1 + g0Lg1RM0 + g0Rg1RM1)D2 + g0Lg1Rg3Rm3D3)] (E.42)

Bv
3R = Bv

3L(R ↔ L) (E.43)
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E.4 T-Channel Box with Gluino

g0L = Jq R ∗
i , g0R = Jq L ∗

i (E.44)

g1L = Jq′ R ∗
j , g1R = Jq′ L ∗

j (E.45)

g2L = Aq′ R ∗
jn , g2R = Aq′ L ∗

jn (E.46)

g3L = F q L
Φ , g3R = F q R

Φ (E.47)

M0 = mg̃ (E.48)

M1 = mq̃′j
(E.49)

M2 = mq′ (E.50)

M3 = mq (E.51)
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qi˜
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qj˜
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M2

M1
M0

M3

g3
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2
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2
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2
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2
2 ) (E.52)

C0(m
2
1, m

2
4, u,M

2
1 ,M

2
2 ,M

2
3 ) (E.53)

D0(m
2
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2
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2
4, m

2
2, t, u,M

2
0 ,M

2
1 ,M

2
2 ,M

2
3 ) (E.54)

Bs
4L =

CF

16π2

2∑

j=1

[g0R(−(g1Rm3M0(g2Rg3Lm1D1 + g2L(g3LM2(D1 +D2)

+ g3RM3(D0 +D1 +D2)))) + g1L(g2Rm1(g3RM2M3D2 + g3L(C0 + C ′
2 +M2

0D0

+ (m2
1 +m2

2 +m2
3 +M2

3 − s− u)D2

+ m2
2D3)) + g2L(g3RM3(C0 +M2

0D0 + tD2 +m2
2D3 − uD3 +m2

3(D1 +D3))

+ g3LM2(C0 +M2
0D0 +m2

1D2 − sD2 +m2
2(D2 +D3)))))

+ g0L(−(g1Rm3(g2Rg3Lm1M3D1 + g2L(g3LM2M3(D1 +D2)

+ g3R(C0 − C ′
0 − C ′

1 +M2
0D0 − uD1 +m2

1D2 − (s+ u)D2 +m2
3(D1 +D2)

+ M2
3 (D1 +D2) +m2

2(D2 +D3)))))

+ g1LM0(g2Rm1(g3RM2D2 + g3LM3(D0 +D2))

+ g2L(g3LM2M3D0 + g3R(C0 +M2
0D0 − uD0 − uD1 + tD2 − uD2 − uD3

+ m2
3(D0 + 2D1 +D2 +D3) +m2

2(D0 +D1 +D2 + 2D3)))))
]

(E.55)

Bs
4R = Bs

4L(R ↔ L) (E.56)

Bs
4L =

CF

16π2

2∑

j=1

[−(g0L(g1Rm3(−(g3R(g2Lm1D1 + g2RM2(D1 +D2))) + g2Rg3LM3D3)
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E Box Contributions

+ g1LM0(g2Lg3Rm1(D0 +D2 +D3) + g2R(g3LM3D3 + g3RM2(D0 +D3)))))

+ g0R(−(g1Rg2Rg3Lm3M0(D0 +D1 +D2 +D3))

+ g1L(g2Lm1(g3LM2D2 − g3RM3D3) + g2R(−(g3RM2M3D3)

+ g3L(C0 +M2
0D0 +m2

3D1 + tD2 + (m2 −M3)(m2 +M3)D3))))
]

(E.57)

Bs
4R = Bs

4L(R ↔ L) (E.58)
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